PharmAsia's Venture Explanation by Logistic Hypotheses.

The roots: $r_1, r_2, ..., r_n$, are seen in an existing polynomial p(x) and $p(x)(x - r_{n+1}) = g(x)$, corrective with media (see below) and $r_{n+1} \in \{r_1, r_2, ..., r_n\}$. We have $(x - r_{n+1})$ as auxiliary corrector.

Relaxation and Satisfiability as a good Threshold where $c_i = x_i$, (c_i is a satisfaction root)

$$f(x) = h_{\vartheta}(x) = \{Ax \ge 0\}$$

Satisfiability as Media Advertising: $c_i = x_i$ and Contingent

$$g(x) = h_{\vartheta}(x) = \{Ax = b\}$$
 and we know that

$$g(x) = \hat{h}_{\vartheta}(x) = \Pr(y = b \mid x, \vartheta) \in [0, 1]$$
 as investment in Leisure afterwards

The Common Threshold Output Classifier with Step are for both f(x) and g(x) Satisfiable.

The Occurrence:

 $\hat{h}_{\vartheta}(x) = g(k(x))$ where k(x) is delay but also loss and the command

$$u_n: x \to g(k(x))$$
 as $g(k(\mathbb{R})) \cong \mathbb{R} \supset \mathbb{N}$

and
$$w_n: y \to \hat{h}_{\vartheta}(y)$$
 as $\hat{h}_{\vartheta}(\mathbb{R}) \cong \mathbb{R} \supset \mathbb{N}$, known as wave w .

The intervention

$$||u_n(g) - u(f)|| < M||g - f|| + ||u_n(f) - u(f)||$$

with $u_n(g)$ as media, u(f) Venture Utility, M stable, and $||u_n(f) - u(f)||$ the Common Threshold Output Classifier with Step and for both f(x) and g(x) Satisfiable.