Participatory Priors with data and Posteriors . Bayesianisme et inférence.

Data comes from Probability Distributions (pdf) could be from many unknown Distributions. We want:

- 1. an *inference* on Distributions of Parameters $(\vartheta_1, ... \vartheta_n) \in \Omega$ (Parameter Space)
- 2. Find from which Distribution comes the Data.

If Data has type and amount, we have an experiment that could be mastered!

Prior Distributions. (specifying as Bayesian Property)

 $f(x \mid \vartheta)$ a pdf where $\vartheta \in \Omega$ is unknown. We call *Inference* finding ϑ . Experimentation leads to x_i are observations from $f(x \mid 9)$, $x_i \to \Pr(\vartheta_i \in \Omega) = \xi(\vartheta), \quad \vartheta \in \Omega,$

$$x_i \to \Pr(\vartheta_i \in \Omega) = \xi(\vartheta), \quad \vartheta \in \Omega,$$

$$\xi(\vartheta) \in [0;1]$$

also called Prior Distribution on ϑ , a pdf that is discrete or continous. This *pdf* is called Bayesian Statistics.

A Fair or Two Headed Coin is discrete, and Uniform and Parameter from Exponential Distribution continuous.

If $\theta_1 \approx \Omega$ and is unknown, is a non Bayesian Statistic.

Posterior Distribution. (deducted from Bayesian Theorem) (**Demonstration**)

The random sample from Distribution is $x_i \to f(x \mid \vartheta)$,

a pdf of
$$\vartheta = \xi(\vartheta)$$
, Prior pdf on Ω .

The Joint pdf $\rightarrow f_n(x_1, x_2, ... x_n \mid \vartheta) = f(x_1 \mid \vartheta) f(x_2 \mid \vartheta) ... f(x_n \mid \vartheta)$ We have the n+1 Joint pdf of $x_1, x_2...x_n, \vartheta$, as the form $f_n(\overrightarrow{x} \mid \vartheta)\xi(\vartheta)$

$$g_n(\overrightarrow{x}) = \int f_n(\overrightarrow{x} \mid \vartheta) \xi(\vartheta) d\vartheta$$

The Posterior conditional pdf of ϑ that is x_i as

$$\xi(\vartheta \mid \overrightarrow{x}) = \frac{f_n(\overrightarrow{x} \mid \vartheta)\xi(\vartheta)}{g_n(\overrightarrow{x})}$$

From the Bayes Theorem where $\vartheta \in \Omega$.

Here $\xi(\vartheta \mid \overrightarrow{x})$ is the Posterior Distribution of ϑ as depending on x_i .

We see $\xi(\vartheta)$ as a Prior pdf (relative likeyhood of $\vartheta \in \Omega$ and $\xi(\vartheta \mid \overrightarrow{x})$ relative likelyhood that $X_1 = x_1, X_2 = x_2, ... X_n = x_n$.).