
PharmAsia sold as an Enterprise.

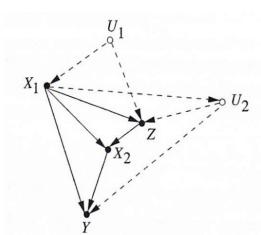
Parameter introduction by the Business Community: $c \sin(x + t)$:1, where c is the coefficient error in investment and t the delay.

 $t\sin(x+t)$

The Action and Observations are seen as conjunctions and this is a Passive Business:

$$do(X_i = x_i) \iff s_i \to (x_i \to y_i) \text{ and } \Pr(Z = z) \to do(X = x).$$

Here *Z* is the facilitator in Cluj.


We define:

X as control variables ($\exists i$ such that $\exists X_i$) and

Z and observed fixed variable

U latent unobserved variable and

Y outcome variable.

Figure 4.4 The problem of evaluating the effect of the plan $(do(x_1), do(x_2))$ on Y, from nonexperimental data taken on X_1 , Z, X_2 , and Y.

The Plan may be Sequential as a Scene Renewal and non-Sequential (both Acting and House or Agency as Time varies).

Opportunity of PharmAsia. Reference sale: www.square.com/ca/townsquare. This is done through Price establishement at Geometric Favour with Risk.

We calculate

 $Pr(PharmAsiaAccepted \mid PharmAsiaSold) \rightarrow \exists Pr(PharmAsiaSold \mid PharmAsiaAccepted)$

This is called Utility in the case of each interlocutor and is an Adjunct Operator $\langle Ax, y \rangle = \langle x, A^{adj}y \rangle$. The calculation of the target is in the order:

$$Pr(E_1), \rightarrow E_2 \cap E_2, \rightarrow Pr(E_2 \cap E_2), \rightarrow Pr(E_2 \mid E_1)$$

	$Pr(E_1)$	$Pr(E_2)$	$Pr(E_3)$	$Pr(E_4)$
$Pr(E_1)$		$Pr(E_2 \mid E_1)$		••
$Pr(E_2)$		••		••
$Pr(E_3)$	• •	••		• •
$Pr(E_4)$				

Cash Flow: $\exists x_0$ with the Partner and the Competitors known as y_k . The self determination is $(x_1 \land y_k)$. In the calculation with corrector g(x) = y, $g \circ f$ is Media optimal and $f \circ g$ AQPP coherent.

Syndicates and Controversy: $x_0 = X_{ij} = f_j((a_{ij}) = k_l)$ that is favour j, where x_0 is a Cash Flow as seen above (called Cost of raising Equity) and should be well computed in Plan.

Talking with accompanying Interlocutors: $\ln \circ f \to f^{-1} \circ \exp$, where exp comes from the Market, and f are Favours, with j gain in Time and the following Growth Issue.

Candidate for partial; fractioning with a Sale Cycle 1 and 2 and Sustainable Curve. $x_3 = \frac{x_1T_1+x_2T_2}{x_1+x_2}$

$$x_3 = \frac{x_1 T_1 + x_2 T_2}{x_1 + x_2}$$

We let believe that T(x) exists, and T(0) = 200.

$$\Delta T = \frac{1200\Delta t - 30T\Delta T}{1000}$$
 and $\frac{\partial T}{\partial t} = \frac{1}{100}(120 - 3T) = 1, 2 - 0, 03T$

In Δt minutes we face $30\Delta t$ minutes of 200 species (passage) at quality 40, to find: $T + \Delta T = \frac{40(30\Delta t) + T(1000 - 30\Delta t)}{1000}$ where 1000 is the maximal capacity. $\Delta T = \frac{1200\Delta t - 30T\Delta T}{1000}$ and $\frac{\partial T}{\partial t} = \frac{1}{100}(120 - 3T) = 1, 2 - 0, 03T$ If you solve this differential equation, namely $\frac{\partial T}{\partial t} = 1, 2 - 0, 03T$ with T(0) = 200 we have: $T = 40 + 160(e^{-0.03})$ and $\ln(e^{-0.03}) = \ln(\frac{T - 40}{160})$ such that

$$t = \frac{1}{-0.03} \left(\frac{T - 40}{160} \right)$$

The Legal Form is bounded and there is a Passive Price.