Numbness. The Separation Theorem. Minimum Distance to a Convex Set.

Theorem: Let x be a vector in a Hilbert Space H and let K be a closed convex subspace of H (as Interior). Then there is a unique vector $k_0 \in K$ (Selection) such that $||x-k_0|| \le ||x-k||$ for all $k \in K$. Furthermore, a neccessary and sufficient condition that k_0 be a unique minimizing vector is that $(x - k_0 \mid k - k_0) \le 0$ for all $k \in K$. (Lésions de Pression)

Proof:

To prove the existence. Let $\{k_i\}$ be a sequence from K such that

$$||x - k_i|| \rightarrow \delta = \inf_{k \in K} ||x - k||$$

By the parallelogram Law

$$||k_i - k_j||^2 = 2||k_i - x||^2 + 2||k_j - x||^2 - 4||x - \frac{k_1 + k_j}{2}||^2$$

By convexity of K, $\frac{k_1+k_j}{2}$ is in K; hence

$$\left\|x - \frac{k_1 + k_j}{2}\right\| \ge \delta$$

and therefore $||k_i - k_j||^2 \le 2||k_i - x||^2 + 2||k_j - x||^2 - 4\delta^2 \to 0$. The sequence $\{k_i\}$ is Cauchy and hence converging to an element $k_0 \in K$. By continuity $||x-k_0||=\delta.$

To prove uniqueness, suppose $k_1 \in K$ with $||x - k_1|| = \delta$. The sequence

To prove uniqueness, suppose
$$k_1 \in K$$
 with $||x - k_1|| = \delta$. The sequence $k_n = \begin{bmatrix} k_0 \text{ for } n \text{ even} \\ k_1 \text{ for } n \text{ odd} \end{bmatrix}$ has $||x - k_n|| \to \delta$ so, by the above argument, $\{k_i\}$ is Cauchy and

convergent. This can only happen if $k_1 = k_0$.

We show now that if k_0 is a unique minimizing vector, then $(x - k_0 \mid k - k_0) \le 0$ for all $k \in K$. Suppose to the contrary that there is a vector $k_1 \in K$ such that $(x-k_0 \mid k_1-k_0) = \epsilon > 0$. Consider the vectors $k_\alpha = (1-\alpha)k_0 + \alpha k_1$; $0 \le \alpha \le 1$. Since K is convex, each $k_{\alpha} \in K$. Also

$$||x - k_{\alpha}||^{2} = ||(1 - \alpha)(x - k_{0}) + \alpha(x - k_{1})||^{2}$$

$$= (1 - \alpha)^{2} \|x - k_{0}\|^{2} + 2\alpha(1 - \alpha)(x - k_{0} | x - k_{1}) + \alpha^{2} \|x - k_{1}\|^{2}$$

The quantity $||x - k_{\alpha}||^2$ is a differentiable function of α with derivative at $\alpha = 0$ equal to

$$\frac{d}{d\alpha} \|x - k_{\alpha}\|^{2} \|_{\alpha=0} = -2 \|x - k_{0}\|^{2} + 2(x - k_{0} \|x - k_{1})$$

$$= 2(x - k_0 \mid k_1 - k_0) = -2\epsilon < 0$$

Thus for some small positive α , $\|x - k_{\alpha}\| < \|x - k_{0}\|$ which contradict the minimizing property of k_{0} . Hence, no such k_{1} can exist.

Conversley, suppose that $k_0 \in K$ is such that $(x - k_0 \mid k - k_0) \le 0$ for all $k \in K$. Then for any $k \in K$, $k \ne k_0$, we have

$$||x - k||^2 = ||x - k_0 + k_0 - k||^2 =$$

$$= \|x - k_0\|^2 + 2(x - k_0 \mid k_1 - k) + \|k_0 - k\|^2 > \|x - k_0\|^2$$

and therefore k_0 is a unique minimizing vector. QED.