Pain. Peine. Schmerzen.

Abstract: We present a speculation on pain from mathematical Spaces and their properties as well as the Poisson and Binomial Process.

Passage and Path of Pain.

Clearly Pain is defined as $\exists f_i$ such that $X_1 + X_2 + ... X_n \le n$, with the Separation Condition: $x_i \neq y_i$ such that $f_n(x_i) \rightarrow f_\infty(x_i) \ \forall i,j \in \mathbb{N}$

$$\left\langle \sum_{i=1}^{n} \frac{X_i}{n}, \sum_{i=1}^{n} \frac{X_i}{n} + \frac{X_{n+1}}{n+1} \right\rangle \Rightarrow \left(\frac{X_{n+1}}{n+1} \to 0 \right) \quad \text{and} \quad \Pr(\sum_{i=1}^{n} X_i) = np$$

This is a Banach Space. We say p is the step, and t the time, and $Pr(X_i)$ the availability of path.

Waiting and Pain in a Space.

In time [0;t) we have the number of events $E_i = x_i$ in time i. We determine λ (that takes time) for $\frac{1}{e^{\lambda}}E(\sum_{i=1}^{n}x_{i})=\frac{\lambda}{e^{\lambda}}$. This is known as the rapport $\lambda:e^{\lambda}$ or $1:\ln x$. We have the one experiment $\frac{1}{1-x_i}$ as big as possible, finding x_i big. (It is ordered by Pleasure in the Hilbert Space).

1. The Metric Space M_i .

The Continuity feature is $f: M_1 \to M_2 \Rightarrow f(M_1)$ as Compact. (Compact if the Subsequence of a Sequence of Points in M_i is converging)

The Hope condition (or Heine Borel Condition) is that an Open covering G_i of M_j then

$$M_j$$
 is compact and G_1G_2 , convergent as Open for Closing them. (Spaces are Metric and go as Compact). We want $\bigcap_{i=1}^n G_i$ with intersections of $\bigcap_{i=1}^n f_i(G_i)$. The function feature that comes

regularly is $\exists \max_{x} f(x \in G_i)$. f is bijective (injective and surjective) on a compact M_i , then $f^{-1}(M_i)$ is also continous. We are conscious of $f(G_i)$ as a sequence in M_i or M_i . The metric spaces are uniform (écarts finis en séquence; and Space Seperation Condition $x_i \neq y_i$ such that $f_n(x_i) \to f_\infty(x_i) \ \forall i,j \in \mathbb{N}$ – (also called the Condition of Kolmogorov)). We also expect the Space to be Affine. A uniform and affine Space is Normal.

2. Spaces and The Projection Theorem.

We have the Projection Theorem.

In The Hahn Banach Theorem: in front of Convexity (Sphere) and a point out of the Sphere x, \exists a hyperplane separating the point and Sphere (Cones and Convexities). $F: [a,b] \to f([a,b])$, is a Space of continous functions in a Vector Space.

We know that the *Normed Linear Space* with $||x + y|| \le ||x|| ||y||$ and $||x|| - ||y|| \le ||x - y||$. The Space S is Open, with $x_i \in S$, and it is Closed if all limit points of S are in S.

2

We laso know that
$$\sum_{i=1}^{\infty} |\xi_i \eta_i| \le |x|_p |y|_q$$
 and $\left(\sum_{i=1}^{\infty} |\xi_i + \eta_i|^p\right)^{\frac{1}{p}} \le |x|_p + |y|_q$, we know the

Cauchy Sequences in the Banach Space are bounded. *The Hilbert Space*: as \exists a Projection Theorem and Orthogonal Complement Activity, with the Gram-Schmidt Procedure: $e_1 = \frac{x_1}{\|x_1\|}$, and $z_2 = x_2 - \langle x_2 \mid e_1 \rangle e_1$.

We have a projection on a Convex Set (as the Sphere), and there is a Separation: $\exists x_0$ such that $||x - x_0|| \le ||x - k||$. $\forall k$.