PharmAsia's Buy Out Situation.

The House and the obliged **Step** Out of House. The Assets: $\{a_i\}$ are known with **Logistic Thresholds** $f(a_i) \leftarrow a_i$, that is Surjective Normal on Effect, with at a_k , in vicinity $f_{vicinity}(a_k) = g(a_k)$ and g as Corrective Error with Dollars in Range (the Net Income). Not being solvent we see the Assets liquid or not.

For k, k+1, k+2..., there is $f(a_i) \mid_{i\neq k}$, named Liability if $i\neq k$ with Partner Intangible Service to Aquisitions Customer also called Residual Claim and Purchase. The suite k, k + 1, k + 2 is called **Idéation** (and ranking).

The Itinerary Pivot and Surjective Proof: $a_{k,k+1,k+2...}$ (sustainability) at $f(a_{k,k+1} \mid_{k+m})$ as Today's Cash Flow.

For the Surjectivity $g(a_{k,k+1,k+2...k+m})$ for m Assets in front of Pivot are called **Evaluation Report** and require $f_i \Leftrightarrow g_i$. If $f_i \approx g_i$. (namely around k) the Report is not **passive**. The Induction at k, k+1, k+2... is calculated from RAMQ as Current or Short Term, capitalizing on g, and Liability tangible.

For k, k+1, k+2..., set with Idéation in front $s_i \to (x_i \to y_i)$, with $g: x_i \to y_i$, correcting from Type x_i , and fits a Risk Evolution: $s_i \to g$. This is the Step Out House.

Pivot Astute Itinerary assisting a Salesman.

The Object is to collect data: $x(t_i) \rightarrow y(t_i)$ for a role (that is learned as Type) in a group. To this we see at i, the node n_i , explained below from Asset.

We determine the following Itinerary $\mathfrak{I} = \langle n_1, n_2, \dots n_k \rangle$ n_k is the last node, periodic at Price.

We know as
$$x(t) \to t, x$$
 is a function of time and itself pivot. Namely $\frac{\partial x(t)}{\partial t} = f(t, x(t))$.
Also $x(t) = E(t) = \frac{1}{N} \int_{0}^{N_0} f \cdot dN$ where t is an index of N .

We have cohorts $N_0, N_1, N_2...$ at different times and bounded after some k. N_0 is the initial cohort at station 0

The given N_i are: 2; 6; 5; 4; 3; 2...

We want to establish the cohort at station α , and know that $|N_i| \ll |N_i|$ also called clusters.

For station 0 we expect $E(t) = \frac{1}{N} \int_{0}^{N_0} f \cdot dN$ where *t* is an index of *N*.

It is given at station 0 that $N_0 \exp(-0.2t)$ is the initial cohort and the calculation (disposition from exponentiallity):

$$E(t) = \frac{1}{N} \int_{0}^{N_0 \exp(-0.2t)} t dN = \exp(-0.2t)t$$

There is particular satisfaction for $k \in \mathbb{N}$, in $N = \frac{N_0}{1+kN_0t}$ (selling a ticket for station α).

What is E(t) for such an amount ?

$$E(t) = \frac{1}{N_0} \int_{0}^{\frac{N_0}{1+kN_0t}} t \cdot dN = \frac{1}{N_0} \cdot \frac{N_0}{1+kN_0t} = \frac{1}{1+kN_0t}$$

Choosing the Pivot in the linear program.

We change from dimension n_k to another n_m , by listing them in \mathfrak{I} .

- 1 Column with biggest negative yield in the objective function.
- 2 Divide each non zero entry a_i by corresponding b_i and and take the smallest non-negative ratio.

Here a_i is also called a_i . (the ratio is a psychological advantage).

Clearly, $a_i:b_i$ is a division and for the progression $a_i,a_i',a_i'',\ldots,b_i$ we have

Elearly,
$$a_i$$
: b_i is a division and for the progression a_i, a_i ,
$$E(t) = \text{at}', '', ''' \dots = \frac{1}{N_0} \int_{0}^{\frac{N_0}{1+kN_0 t}} t \cdot dN = \frac{1}{N_0} \cdot \frac{N_0}{1+kN_0 t} = \frac{1}{1+kN_0 t}$$

$$E(t) = \frac{1}{N_0} \int_{0}^{\frac{N_0}{1+kN_0 t}} t \cdot dN = \frac{1}{N_0} \cdot \frac{N_0}{1+kN_0 t} = \frac{1}{1+kN_0 t}$$

$$\frac{\frac{N_0}{1+kN_0 t}}{\frac{N_0}{1+kN_0 t}} t dN = \frac{1}{1+kN_0 t} \text{ for } a_i \text{ and } b_i.$$

For the constant N_0 , we have to know: the itinerary is $N_0, N_1, N_2 \dots$ as nodes n_k . Clearly we have $\Pr(t = k) = \frac{\lambda^k e^{-\lambda}}{k!}$ for a mean waiting time of λ in a Poisson Process.