Critical Sets and Vectorial Critical Sets.

The **Observations** are defined as by **Control** or **Latent** Variables, for **Outcome** Variables (see diverse Code Types). Its Range is seen by identifying three Species of Discontinuity. **These Species are** Prior Left or Right, Boundary Discontinuity Left or Right as Posterior and Partition Discontinuity by lack of Rational Fonctions on Intervals. The Variables are so defined for Continuity and Discontinuity, introduced with **Intermediary Continuity** on an Interval: visited by the Infinitely Small or Large Equivalences by Divisors (as Implicit with Normal Equations as a Direct Solution).

We also define Caches Feedbacks and Shears in order to find Hosting Data. 1): The Species of Discontinuities are Jumps from Domain and produces Alignement of Critical Sets, this for Data Separation in a User Interface. 2): Data Separation is defined by Intervals that are mainly Domains (as Discretional Data). 3): This Data leads to Parallel Segmentation for Quotes (as other Data). They trade for Data Active Investment Monotonicity and Sigletons. 4): These are also related to Mobility and Accessibility of Data Regimes. 5): The Regime for Access to Cloud as Levitation of Data. The Objective is also called Tardive Investment. The Steps 1 to 5 are Data Regimes and we reach Stability of Data at point of Sale.

Parallelism, another feature of Code, is seen by Chernikova's Bivariate Proof and defining Correctors in the number of Quotes. For Sustainable Mouvement of the n Bodies, we recall that Data presents Phases and Commands: Some Commands are Admissible at the First Species of Discontinuity. A feature of Differentiation and Discontinuity on an Open Set are introduced because they lead to Tangents and Equivalences in current Language. It is a Data Mapping. The Rollé theorem is also seen by Proportions (Intervals). Also called Support. There is a Protocol for Report (Levitation of Data) and is also named Limit of Partition: By Intervals we also mean Shears. In Mathematics: Continuity leads to Limit Processes. Convexity of Discontinuities and Singularities are Partitions in a Critical Set of Values. (also called Data Domain).

The written Code of Resurgence (Representation) as Singularity and Critical Point is a family of Parameters in the Domain Application and is in relation to forwarding functions. About the Code, we also define: Regularity as Mobility in Dual Spaces: (see point 4): above), that is coded as a Drift (from Inflection Point). Data Hosting is defined for Credibility and Binding. This Data is subject to Shift. We also define Data Immunity as a Catastrophy, coded by a Cone that reaches the feasible Set of the Chernikova's Algorithm. (in the document we speak about Angular Coefficient and Stream). The Pivot Presentation is called Data Welness and is well Angular and Scaled. A feature of Data Sharing.

The Lines of Share are in Binding at a Liaison of Chernikova's Cone with its Object as Ordering the Mark Border for Data and Othering (venue by Augmented Reality). Twinge Points and Progression are introduced as Hysteresis of Wavelets from an unstable Domain to Regime.

Innovation: The **Observation** is also for **Latent** Variables. By defining **Code Types** we define a Range for **three Species** of Discontinuity and further other. These Species are based

on Prior, Posterior and Fuzzy Distributions. The Real Time Code defines Caches, Feedback and Shears for Object Oriented Programming. The Intervals are introduced as Domains for Discretionary and Parallel Segmentation. Movement of Data is seen through Levitation that is well defined. As a Sharing Objective in Lab or Decision, brings Stability at a Half Line Completely mapped from Continuous Critical Points. (this is an Admissible Command by Sustainability in Phasis and Command).

Mapping as Differentiation of Domain to Discontinuity leads to a Tangent Operator as a Bound. The Rollé theorem is visited from Shears. Partition is not only seen from Discontinuities but also by Limits of Partitions. Domains are well defined and thorough. By Chernikova's Algorithm I am binding an Order in a feasible set from what she calls a Cone.