Selling Ticket- Bernoulli

Deliberating without money. The Act. There is an **Act** (viewing from outside) and not **Action** (viewing from inside). The Act is an evidence. Reasoning: choose option x, that $\max_x U(x) = \sum_y \Pr(y \mid do(x))u(y)$ where U is a utility function, and u(y) the utility of outcome y. Rewritten: $\Pr(y \mid do(x)) = \Pr(x \Rightarrow y)$ read as y if it were x.

Deliberating for money. The Actions. Conditional Actions and Stochastic Policies. (Money). There is an *influence diagram* $E_i \rightarrow E_{i+1}$. If there is no i such that $E_i \rightarrow E_j$ then E_j is an **exogenous variable** and $E_j \rightarrow E_{j+k}$ are conditioned probabilities quantities. (You have to anticipate the exogenous variables). **Work**: You should look for causes that choose exogenous variables. There are many Acts and Actions. We force a variable or group of variables X to take on some specific value x. The policies determine X compounds to X through a functional relationship X (X) = X0 or stochastic X1. We want to identify X2. Pr(X3, X3). Pr(X4 | X5, X6) is the distribution of X6 given policy X6 and

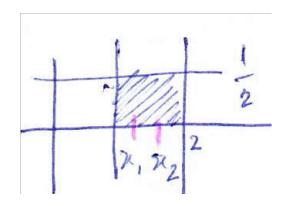
$$\Pr(y \mid do(X = g(z))) = \sum_{z} \Pr(y \mid do(X = g(z)), z) \Pr(z \mid do(X = g(z))) =$$

$$= \sum_{z} \Pr(y \mid \hat{x}, z)_{x = g(z)} \Pr(z) = E_{z} [\Pr(y \mid \hat{x}, z)_{x = g(z)}]$$

We have $Pr(z \mid do(X = g(z))) = Pr(z)$

$$Pr(y)_{Pr(x|z)} = \sum_{x} \sum_{z} Pr(y \mid \widehat{x}, z)_{x=g(z)} Pr(x \mid z) Pr(z)$$

The deliberation is by Outcome and Latent Variables: The Rest is by $h_{\theta}(x) \in \{0; 1\}$. $\forall x \in \mathbb{R}$. The Assistant **as Distributions of Random Variables** X and Y, with Points s as a Shear in between **Points of a Rectangle** (**Paper and Pen**): $S = \{(x,y) : x \in [0,p] \text{ as } X \text{ and } y \in [0,\frac{1}{p}] \text{ as } Y\}$ called *Élongation*. The Feasible Set as a **polytope** with 4 vertices in \mathbb{R}^2 , we have the Plot here and these are: $(x,0),(y,0),(x,\frac{1}{p})(y,\frac{1}{p})$.



The **Segment Sign In** is as: $\Pr[x \le X \le y]$ is as $0 \le x \le y \le p$ with value $\frac{1}{p}(y-x)$ at $1 \quad 0$ with a second dimension as *Domain Élongation*. The progression is:

Alignement Affiliation and Affichage. See \mathbb{N} and Amazone Data. Here Alignement as $\lambda_i \downarrow$, Affiliation αa_{ij} and Affichage $\alpha_1 a_{ij}$ and $\alpha_2 a_{ij}$. The Patient is eigen: as from Mental Relief as Clozaril. **Selling the Assistant** as from: The **Bernoulli Trial and Distribution**: two possible Outcomes (0;1) as Distribution and *Génératrice*: X_1, \dots, X_n : we say the X is a random variable that has a Bernoulli Distribution

$$f(x \mid p) = \left\{ \begin{array}{c} p^x (1-p)^{1-x} & \text{for } x = 0; 1 \\ 0 \text{ else} \end{array} \right\}, \text{ with } f(1 \mid p) = p, \text{ and } f(0 \mid p) = 1-p.$$

$$E(X) = 1 \cdot p + 0 \cdot (1 - p) = p$$
, $E(X^2) = 1^2 \cdot p + 0^2 \cdot (1 - p) = p$, and $VAR(X) = E(X^2) - E(X)^2 = p(1 - p)$.—The Ticket is Univariate

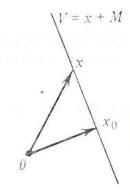
Bernoulli and Binomial as Discrete Distribution and Normal and Exponential as Continuous Distribution The **Bernoulli Trials** face $X_1, ..., X_n$, independent and identically distributed (i.i.d). infinite sequence of Bernoulli trials with parameter p. (we say fair coin tossed repeately (Pointer), n:

Surjectivity of defective and non defective independent and depended at a percentage p (exemple $\frac{1}{10}$) in selling the first Ticket. The Geometric Distribution is defined:

$$f(x \mid 1,p) = \left\{ \begin{array}{c} p(1-p)^x \text{ as } x = 0,1,2,... = \mathbb{N} \\ 0 \text{ otherwise} \end{array} \right\} \text{ with } p \in (0,1).$$

 $X_1, X_2, ..., X_n$: as Bernoulli Trials as $n \to \infty$ with $k \in \{0; 1\}$ with success at p and failure at (1-p). If X_1 denotes the number of failures at probability 1-p, that occurs before the first success is obtained, then we say X_1 has the **Geometric Distribution** with parameter p. As j = 2, 3, ... is the number of failures occuring after j - 1, successes that have been obtained but before the jth success is obtained. (**Country Side Living** as Exponential Argument).

The Channel is defined as Point to Scaling. The Variety is defined: Duality (The Classification Exercise at Upstream) comes as: The Minimum Norm Problem in as much as The Projection Theorem. At x_0 we have $g_i(x_j)$ and $m_0 \in M$ as distance incidence x and x_0 . The Projection: $X \to Part$ of X finite dimensional by Normal Equations. We are given $M \subset H$ a Hilbert Space. $x \in H$ and the variety is known as $x + M = V \to \exists x_0$ unique in x + M of minimum norn and $x_0 \perp M$.



Minimum norm to a linear variety

This is a Hand for **Secondary Effects** all at once form Assistant. (from Channel variation from Duality as a Minimal Norm Problem: in as much as the Projection Theorem: Brain and Hand: Adjacence in House is a Transit Exchange and Delay by Range. (onto Clozaril). Real Quality as Mouvement: **The Hahn Banach and Separation** theorem introduce a Work function at π_i at i = k. For these, $\exists P$ a Sphere as given around an Origin, and $P \notin P$, then $\exists \pi_k$ hyperplanes, with $P < \pi_k < P$.

Dialectics and **Duality** are regularly introduced as:

$$\min_{\mathbf{b}}(P-\mathbf{b}) = \max_{K \text{ to } \mathbf{b}}(P_k - \pi_K(P)), \ \forall \pi : P < \pi_K < \mathbf{b}$$