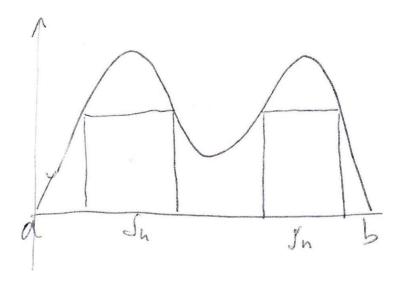
German Grammar and Limits. Transit Mediation and Data Shift Range.

Market is defined as inner product aligned with *i* on Time. See Kleinste Quadrate:

$$Q = \sum_{i=1}^{n} [y_i - (\beta_1 + \beta_2)x_i]^2$$
. Gain from Streamline as Evidence and Belief (Confiance),

by Single Variable Calculus parametrization. See Plan.pdf. The Transit Budget is form Organization to Singleton by Maps Mobility and totaly bounded covering. We define a Field as: uniform distribution by S_n a Host in House.

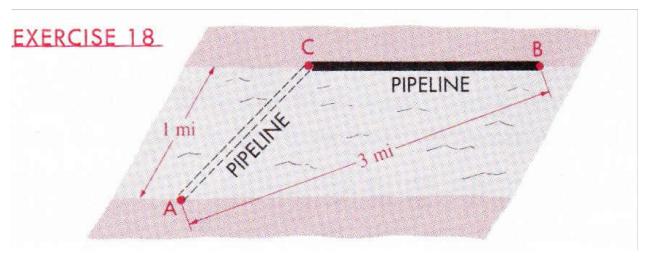
By Continous Functions closed on a finite Interval that we find from Continuity of f on [a,b] as $|f|_{[a,b]} | \le K$. We define Support $S_n = \{x \in [a,b] \mid f(x) > K\} \to \exists x \in [a,b]$ such that f(x) > K. The Proof is: (we go form Continuity to Bound in 14 steps). 1) We define Support $S_n = \{x \in [a,b] \mid f(x) > K\} \to \exists x \in [a,b] \text{ such that } f(x) > n$. 2) If empty $\exists n$ such that $f(x) \le n$ a Bound. 3) If you show S_n non empty $\forall n \in \mathbb{N}$, then we see a Contradiction and set S_n to empty. 4) S_n is bounded above and below by a and b. 5) By completeness of S_n , there is a greates lower bound $x_n > a$. (called Alignement).



6) By existence of S_n , f(x) > n at a Point in [a,b], and have S_n Non Empty. 7) f is continuous at that Point and f(x) > n on Interval I, in $x \in I \subset [a,b]$. Hence $x_n < b$. We then have $f(x_n) \ge n$. 8) (think on the contrary that $f(x_n) < n$ then by continuity of f we know f(x) < n for $x > x_n$ setting $x_n \ne glb(S_n)$). 9) $\forall n$, $S_{n+1} \subset S_n$ with Weierstrass as $\{x_n\}$, and $S_{n+1} \subset S_n$ as $x_{n+1} \ge x_n$ (seeing Banks Online) are called Supports with $\{x_n\} \uparrow$. 10) From $x_n < b$ bounded above we have the Convergence $\lim_{n\to\infty} x_n = L$. 11) As $a \le x_n \le b$, $\forall n$, $\lim_{n\to\infty} x_n = L$ setting $a \le L \le b$. 12) where f is continuous at $f(x_n) = f(x_n)$ exists as $f(x_n) = f(x_n) = f$

The Threshold Support defines a Corporate (Continuity) amentitie (Bound). (non empty S_n) is an Internship as Parallel $x_n < b$. (definition of Grammar). The Threshold leads to Digital Account and the advantage to Transit of Market is by Singletons (and Nobility). Carnet Adresse Google from Quote at Oliverbriggs on Platform. By the Binomial Tree we have Penetration to ythe Market as Costs Over determination in Algorithms and and Convexity. The Legacy Fund is a bound on Continous Functions closed on a finite Interval that we find from Continuity.

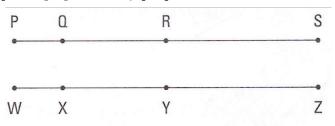
Global trend transition from German Interval PS and Continuity as Bound. We have distances |[AB]| = 3, and cost 4|[CB]| = |[AC]| at the picture below:



$$|[AD]| \ge |[AC]|$$
 and $|[DC]|^2 + 1^2 = 4x$, leading to $|[DC]| = \sqrt{16x^2 - 1}$. $|[AD]|^2 + (|[CB]| + |[DC]|)^2 = |[AB]|^2$ as $1^2 + \left(\sqrt{16x^2 - 1} + x\right)^2 = 3^2$, for which the solution is: $x = \frac{1}{15}\sqrt{143} - \frac{2}{15}\sqrt{2}$. $[AD] = [PW]$, $[DC] = [QR]$, $[CB] = [YZ]$ and this is a stochastic price seen on the

image below

The venture asset pricing is an almost a risk free calculation. The boat heading (a tour point of the present company) is at an angle $\theta \in (0, \frac{\pi}{2})$. We call $\theta = \frac{\pi}{4}$ as a Play Slimer from Personal and Friends. We want to head the boat at that chosen angle: θ and turn from [PQ] to its perpendiculary [XY].



We have $l = \frac{a}{\sin \theta} + \frac{b}{\cos \theta} = l_1 + l_2$. (called assets) and as $l \to \infty$ and then $\theta \to (0 \text{ or }$ $\frac{\pi}{2}$).

The change is:

$$\frac{dl}{d\theta} = -\frac{a\cos\theta}{\sin^2\theta} + \frac{b\sin\theta}{\cos^2\theta} = \frac{b\sin^3\theta - a\cos^3\theta}{\sin^2\theta\cos^2\theta} \to 0$$

This leaves $b\sin^3\theta - a\cos^3\theta = 0$ $\tan\theta = \left(\frac{a}{b}\right)^{\frac{1}{3}}$ by association a Husband, and $\overline{l} = \left(a^{\frac{2}{3}} + b^{\frac{2}{3}}\right)^{\frac{2}{3}}$ as a major size (see fat). The enterprise will go round the corner if $l \leq \overline{l}$. There is a business period in future if $\theta = \frac{\pi}{2}$ as a trend and also called LifeStyle. This movement is also called **passing**. (gown). $\vartheta_1, \vartheta_2, \vartheta_3$ is an angular progression where ϑ_1 a Proposal. The German Scoop as Professional Codes. **The Financial Shift Shield** is by Uniform Distribution and not **Polytope at center of crossing lines (wanted Space Polytope)**!!

Broadcasting in German: is defined by Period f(x+c)=f(x) and Rationality $y=\frac{P}{Q}$ Polynomials and $y=\frac{a}{x}$ at Transit. From Period: $|x-a|<\epsilon\to\lim_{x\to a}x=a$ and $|f(x)-f(a)|<\epsilon\to\lim_{x\to a}f(x)=f(a)$ a Source of Finance from abnormal f. (Cross Product is decreasing). For German we have: $f(x)=\frac{1}{(1-x)^2}\to\infty$ at x=1. (a Boundary discontinuity of German abroad and unboundedness). If bounded $\exists M$ such that |f(x)|< M. If Codomain at ∞ then not bounded. If $f(x)\to b$ then $\frac{1}{f(x)}\to \frac{1}{b}$ that is well defined Field $y=b+\alpha$ as $\lim y=b$ as $x\to a$ or $x\to\infty$. (Canada Uniformely distributed-Major Gain form Grammar in the Context). Also given in $y=1+\frac{1}{x}=1+\alpha$. (at $x\in[1,\infty]$) If $\alpha\to 0$ then $\frac{1}{a}\to\pm\infty$. The two infinitely small as $b+\alpha$ are infinitely small.(Business definition by Quantitative) (debate in Broadcasting). Two functions on a same Domain have Range crossing the x axis and $\exists c$ such that one f(c)=0. Two $z\alpha=z(\alpha(x))$ as $x\to a$ or ∞ are infinitely small if α is infinitely small. As we have an increasing function that is bounded then we have a bounded limit in Domain (Manager). We also have $\frac{\sin x}{x}\to 0$ in displacement (see Germany). The instalement as Growth $(1+\frac{1}{n})^n\to e$ as $n\to\infty$ is by Eastern Europe. The Normality at Airport is defined as: Median $f: M_1\to M_2$ both Compact with Extreme Values as a Median Set M_1 .

Confinement and Normality: These are related Works form A as $s^2 = x^2 + y^2$ a right triangle \triangle with s as hypothenuse and $2s\frac{\partial s}{\partial t} = 2x\frac{\partial x}{\partial t}$ from Uniform Distribution A = xy then $\frac{\partial xy}{\partial t} = \frac{\partial x}{\partial t}y + \frac{\partial y}{\partial t}x$ where A is a symbolic derivative as variable quantity. These are from three sources: 1) from Volume $V = \frac{4}{3}\pi r^3$, $\frac{\partial V}{\partial t} = 4\pi r^2\frac{\partial r}{\partial t}$ as f,g_i . 2) from Wegelange $x = 2\tan\theta = 2\frac{\sin\theta}{\cos\theta}$, $\frac{\partial x}{\partial t} = 2\sec^2\theta\frac{\partial\theta}{\partial t}$, as 3) from Learning Cone $V = \frac{\pi}{3}r^2h$ (h is a height), $\frac{\partial V}{\partial t} = \frac{4\pi}{25}h^2\frac{\partial h}{\partial t}$. The Lagrange Remainders (Normalization) in Vienna are defined as:

$$\bar{f}(x) \mid_{x,\bar{f} \in Space} = f(x) + f'(x)(x-a) + \frac{g_1(x)}{2}(x-a)^2 + \frac{g_2(x)}{3!}(x-a)^3$$

and the **Age Induction Step is as Newton's Method** $x_1 = x_0 - \frac{f(x_0)}{f'(x)}$ with $f'(x_0)(x - x_0) = -f(x_0)$ and $g_i(x_0)(x - x_0) = -f(x_0)$. **The types of Limits** are $(0, 1, \infty, \frac{\infty}{\infty}, \frac{1}{\infty}, 0^0, 1^\infty, -\infty, \dots)$ called Parmeters at infinity as Indeterminate Forms. Here $\lim_{x \to a+} f(x) = \lim_{x \to a+} f'(x) = \lim_{x \to a+} f'(x$

$$\lim \frac{f'(x)}{g_i(x)} = L \quad \text{then} \quad \lim \frac{f(x)}{g_i(x)} = L$$

The Mean Value Theorem is as

$$(b-a)f'(c) = f(b) - f(a) \rightarrow (b-a) = \frac{\Delta f}{\Delta_{b,a}} = \frac{f(b) - f(a)}{b-a}, x = x_0 - \frac{\bar{f}(x)}{f'(x)} \text{ and } f'(x-x_0) = \bar{f} \text{ and } \begin{bmatrix} g_i \\ f \end{bmatrix}$$

The Confinement In and Out: $x - x_0 = \frac{f(x)}{f'(x)}$, $f'(x_0)(x - x_0) = -f(x)$ and

 $g_2(x)(x-x_0) = -g_1(x)$. These **Lagrange Remainders** have g_i as level curves (each

separating) and are asymptotic to 0. Volume is from g_i , $\forall i$, $g_{i+1}(x-ct) = -g_i(x+ct) \rightarrow \frac{\partial^2 w}{\partial t^2} = c^2 \frac{\partial^2 w}{\partial x^2}$ a differential equation with $g_i = g_{i+1}c$. Here

 $\nabla f \neq 0$ as Normal at (a;b) on the Circle as Level Curve, $\nabla f = \frac{\partial f}{\partial x}(xy)i + \frac{\partial f}{\partial y}(xy)j$,

 $g_i(xy) + g_{i+1}(xy)$ asymptotic to 0. Critical Points are at $\nabla f = 0$ such that at

 $g_i(xy) = g_{i+1}(xy) = 0$, and Singular Points $\neg \exists \nabla f$, and Boundary Points as Domain(f) at |x| < M on Disk as $g_{i-1} < g_i$.