Spontanéité - Calcul formel sur un système non chaotique. Plasticité du cerveau.

Spontaneity - Symbolic Computation on a non- chaotic system. Brain plasticity.

Spontaneität - Symbolic Computation nicht auf chaotisches System . Plastizität des Gehirns.

Claudius Liviu Todor: claudiustodor9@gmail.com

Résumé: Nous présentons des calculs sur le déjà-vu, la radiothérapie et l'analogie streamline. Les résultats sont projetés par calcul formel en un automate quelconque. Les notions de discipline et liberté sont transferables depuis l'humain à l'automate. Il y a un calcul sur la spontanéité.

Introduction et mise en situation.

Le réseau est une connexion (a_{ij}) entre le neurone i et j. Suite à un temps t, tout déplacement minimal d'activité neuronale, considère la répetition $(a_{ij})^t$. Si $\max(i) = \max(j)$, (a_{ij}) est carrée. Elle ne devrait pas être conditionnée. Notamment nous voulons des bonnes perturbations dans (a_{ij}) . Le bruit ϵ existe à chaque moment t, mais nous disons que ϵ n'existe pas, et que le système est non-chaotique. Le système non-chaotique est calculable, nous le verront en calcul intensif. Le calcul intensif est un travail où (a_{ij}) est bien défini. En ce sens (a_{ij}) n'est pas indexé. Le temps t, s'appelle le temps de décision. L'information au temps t, est $(a_{ij})^t = A^t$. Les valeurs $A^kA^i \dots A^{k+h}$ sont un collectif. (au temps respectif). Le declaratif A^k , est la matrice

$$A^k = (\alpha_b \cdot x_{ii})$$
, avec $\alpha_b = \epsilon$ pour certains b.

Nous disons que le declaratif est premier au collectif. Ceci s'appelle filtrage. Le système est sopontané si $(a_i)^k \rightsquigarrow (a_{ij})^n$ appartient au collectif $A^k \dots A^n$.

Espaces vectoriels, Spectres, Réflexes et Coma de l'individu.

Nous sommes familiers à $V \in \mathbb{R}^n$ espace vectoriel, u un endomorphisme de $V \to V$, si il y a $x \neq 0$, tel que $ux = \lambda x$. Si $W \in \mathbb{R}^n \times \mathbb{R}^n$ et $u : W \to W$, alors si $X \neq 0$ et $X \in \mathbb{R}^n \times \mathbb{R}^n$, $uX = \lambda X$, nous avons le spectre de cet opérateur u (un ensemble de opérateurs propres $\{X_1, X_2 ... X_n\}$). Si $v \in \mathbb{R}^n$ avec

$$X_k \dots X_{i+l} \dots X_i(v) = X_m(v)$$

alors nous disons que la suite i...i + l...k est un coma en relation à un réflexe l. Si $m_j \in \{i...i + l..k\} = S$, possiblement plus d'une fois (j fois), alors l'ensemble S est partitionné, la position (j = i + o, ...p) est en relation avec $X_{i+o}...X_p(v) = X_m(v)$, et ainsi donc le sujet est hors coma. S est aléatoire et $X_m = A$ un endomorphisme exemplaire parmis m_j exceptionnels.

Conditionnement.

Nous souhaitons que le nombre de conditionnement soit bas. Dans ce cas $(a_{ij})^{-1}$ existe. Nous souhaitons le nombre de conditionnement de (a_{ij}) le plus bas. Si dans le coffectif E_1 et E_2 , il y a présence ou non présence des deux - il n'y a pas de relation de la présence ou non présence de l'autre. (il y a conditionnement Depth in First) (outils simples, calculs formels). Quelle est la probabilité de E_1 , après avoir su de E_2 ? (il y a conditionnement Breadth in First).

Le Bioscope a un effet visuel depuis une photo. (la photo (a_{ij})).

A est associée à une entrée en logiciel, et mis en mémoire. Si le nombre de conditionnement de (a_{ij}) est grand, le système $Ax \le b$ a du parallelisme, et peu de changement en X_k clairement dit, donne beaucoup de changement en X_k . C'est la parallelisation que la sortie du Bioscope ne tolère pas.

 A^n n'est pas séparable en $X_k ... X_{i+l} ... X_i(v)$. Les sommets en question dans $Ax \le b$ sont triés, et des sélections sont déterminées dans le sens que les lignes de A, (a_i) sont les plus enclain à un cluster.

Pour le Bioscope: nous avons la *répétition* x(t) et le *rythme* y(t).

(dans le cadre du cerveau, elles sont la répétition qui revient à l'état initial, et l'introduction d'un paramètre périodique, car nous ne pouvons comprendre que l'enjeu périodique.).

L'étude d'un mouvement isolé dans un médium produit des données en abondance et conduit à la quantité $\frac{\partial}{\partial t}x(t)$ de x(t) dans le temps.

Sans conditionnement $\frac{\partial}{\partial t}x(t) = k \cdot x(t)$ se résoud à $x(t) = k \cdot \exp(x(t))$.

Si nous considérons le spectre $X_m X_o$ et $X_n X_p$, nous trouvons

$$\frac{\partial}{\partial t}x(t) = X_m x(t) - X_n x(t) y(t)$$

$$\frac{\partial}{\partial t}y(t) = X_o y(t) + X_p x(t)y(t)$$

(un système de équations différentielles en relation avec la répétition et rythme).

Le déjà-vu et traumatisme.

La réverberation est une proprieté sublime.

Elle est quantifiée: $A^i + \delta$, en fin de trace.

Le déjà-vu est une proprieté rare. Elle est quantifiée à:

$$(A + \Delta_k)^e = B^n = C$$
 où $\alpha_z c_{ii}$ pour ijz ainsi que $z \in \mathbb{N}$

Dans ce cas ci on a du très persistent dans le temps.

(dans le sens que $\varepsilon \ge n$, et qu'on puisse déterminer B) Nous sommes sans traumatisme si z est petit, B est clairsemée (sparse), n grand et k grand. Pour $n \ll k$, il y a traumatisme. Pour calculer $\alpha_z c_{ij}$, on a du calcul intensif.

Persistance.

La persistance est pour le défaut (en fin de performance). Une percéption du cerveau. En fin de mouvement, nous sommes convaincus et cherchons le repos. L'intérêt est à un défaut: A^k , pour k petit indique que cela est élégant (si A et A^i où $i \in \{1, ... k\}$, sont bien conditionnées).

La persistance est ce qui suit le non-mouvement. La perception dont on parlait. Elle concerne la continuité du mouvement et $(A + \Delta_k)^e$ et, qui determine le mouvement. Il n'y a pas perte de connaissance initiale.