PharmAsia's Computer Connectivity Tracking and Good Habilitation.

The Genoese Lottery (families) and Snowden: in a family we have the expectation E(n,m) of a person (in the family of m by n) and if they sit around a table (all families) we have:

$$\frac{E(n,m)}{\Pr[of \text{ Range } \binom{n}{m}C]} = \frac{\binom{n-(m+1)}{m}C}{\binom{n}{m}C}$$

a probability. For the Chernikova column (shuffling two packs of cards, have two persons turning up cards and willing to know *probabilities of identical cards in* E(n,m)) (The Towers of Hanoi in Society is by the recursion formula for border \rightarrow (Pr[1] + Pr[2] +...+Pr[n]) \leftarrow (no family). Nachlass (def): PharmAsia - Naturalization (no Family) (Sleep)(German bias): Entretiens and Big Data.

Habilitationschrift für Nachlass: (no simultaneity and Snoweden's Shift) as Representation: as n!. There is no sequential plan but inversion $y_i \rightarrow x_i$, where y_i is from computer and x_i Nobility as Signature with Predicate b_i as Incorporation defined as **Cache** $b_i \rightarrow y_k$: by index i and Memory for Connectivity \rightarrow Job listing at Electoralism and *Apparentage*. The advantage of Connectivity is by selling Hardware or Solutions for **Feedback**. The plan is known by $x_i \rightarrow y_n$ as y_n are roots. Here $x_i \rightarrow y_i$ are called Trust (en *Fiducie*). The expansion around a with (x - a) in the Rosenthal Library with $x \uparrow$ and $a \downarrow$ and I = [x, a] called Domain and willing Household Syndicate. $\exists path \sigma : I \rightarrow \mathbb{R}^n, \exists \sigma'(t)$ the tangent defined by $\sigma(t_0) + \lambda \sigma'(t)$ a Lagrangian as Aleika with the definite integral

 $\int_{a}^{b} pdf = df. (Zu Bei Um)$ The criterium of research is $b_n \to y_n$ by Haupt Komponenten

 $Ax + Iy_n \le b$. where y_n grow as Predicate in Variance $\frac{\sum_{x_i \to \bar{x}}}{n}$. Here Nachlass as Kasus with experimentation i has the definition: $CPU \to Preposition$ with $Zu : x_i \to y_i$, $Bei : b_i$, $Um : x_i \to b_i$, Memory : mx, $Predicat : x_i$ in seit, bis, ab. The Prepositions correct as g_i .

Chips have drastic fall in price, and there was OR def: $Embedding(Sell\ Decision\ now)$ for $J(\vartheta_i)=0$ as $Within\ men \to Among\ men$, as $Syndicate \to Armoirie$. The Distribution is defined as Boitier:Rest \to Parameter(implicit explicit as wrong Phone and Clima and has the Connection: $verb\ sale \to Hardware$ as The Towers of Hanoi from stck (3) to (2) to Her. The $verb(Cache)\ sale$ is a Standard and $\sin(\frac{\pi}{2}-x)=\cos(x)$. The Predicate is defined: first partition of the sentence and subordiantes from subject. As such the sentence: (the Satz) is from PharmAsia as a Central Hub. Clima is known as counter Hack. The Business Model replaces the Problem as Grammar: $Adjektive \to Verb$. The Electoralite is a slack variable at Representation.

Selling Sleep as from Habilitation: FormFree o Securities(Multiplicator) where FormFree are Parallel from West Berlin (as sin at $\frac{3}{4}$) and $Securities J(\vartheta_i) = 0$ as a root. To set a new Party: No Representance at Sum of Money and Ordonnancement. The Habilitation as Topological: Captor (Flow Chart Output) at one microprocessor \rightarrow Loop in Amplification of Memory. $\mathbb{R} \to Chips$, a sequence and inner product as amplification of memory and a flow chart output. The Scrutator as Activity (Deputy Officer for Elections): Participates at Party as Fixed Capital (fixwed in RO) $\leftarrow Transmission \leftarrow Engagement \leftarrow Work$. From Sleep:

Zusammmensetzung $\rightarrow No \min alisirung K \lim a \rightarrow Abteilung (An Rechnung und$ Art). Adjectiv: Calculus ins Satz → MemoryChips as Container with Predicate ins Rechnung (Partition in Calculus ins Cache of Computer with Continuity). The Maillage defined: Electoral Speaker (Representance) (v_i) with Community b_i with pivot in (a_i) as a Question Period and Point of Order. The Preposition and Protocol of Proof: à priori: conditions of compatibility (paralellism in multiculturality y_i and $J(\theta_i)$) as constituant and à posteriori: existence $J(\theta_i) = 0$. (regular Sale). Demonstration of Non Continuity: Predicate defined as Variation $\sigma = \frac{\sum_{x_i = \bar{x}} x_i - \bar{x}}{n}$ for a symetric pdf as as a non seen Parabola and seen as Lagrangian Objective of secondary Patrimonio to a **constitutive Patrimonio**. The Trust (Fiducie) is $\exists y_i$

about the Origin. The Power Rule is known as:

$$\int g^{r}(x)g'(x)dx = \frac{g^{r+1}(x)}{r+1} + C$$

where $\frac{g^{r+1}(x)}{r+1} + C$ is a hypothesis. (to find r Chips for Sale called Accord). Here x_2 is a Shear as figurative (a definition) **Grammar** and **Form**. This exhausts the iteration and has Naturalization as a limit. Here $x_2 \to x_1$, is as f^{-1} , as bijective and is a role. We have g_i as roles. The Preposition is delimiting Consumption. Also f may be implicit or **explicit** (with affinité: $\exists b_i$, domain, range, and codomain). We call x_1 à priori and x_2 à posteriori (Predicate for Equity). The Target is y_i in $x_i \rightarrow y_i$ as f. The Context is with events and language for $J(\theta_i) \rightarrow \min$ with inclusion x_k , called affinité.

Sustainability as Perimetric is defined: $\exists \sigma : I = [a,b] \to \mathbb{R}^n, \exists \sigma'(t)$ with $\sigma(t_0) + \lambda \sigma'(t_0)$ and $\left[f(x) \ f'(x) \ \right] \to \exists \max \leftarrow mx + \lambda z = c$ and z is the Activity from g_i . In this case we have indefinite integrals (namely they sum up to x), $\int_{-\infty}^{\infty} g_i (a \text{ complément de } a) days to the finite integrals of the complete integral of the complete in$ nom). If $x \in I$ then we have jumps. The Computer requires no discontinuities for Market Prospection! We also have: f(x) f'(x) as Principal Components (a_i) in $Ax + Iy \le b$. The pivot $(a_{ij}) \rightarrow y_n$ has Maillage as Investment with Support (where financement have y_i). The Support comes from the Library as Protocol $\sin(\frac{\pi}{2} - x) = \cos(x)$ as Actions and Research Politics seen by waves in PharmAsia. Constraints are: Grammar→ Predicate as (a_{ij}) . The Role is by Range as Parallelism in Segment (by Grammar). The Problem is by n corpses.

The **Action and Observations** are seen as conjunctions:

 $do(X_i = x_i) \iff s_i \to (x_i \to y_i)$ and $Pr(Z = z) \to do(X = x)$ with lack of s_i as Relaxation form Observation Z

There is non-determination of the paraboloid as below half of Volume (the Ellipsoid has two foci expressed as polar expansion for Work as Capacity and is not a Sphere). The Shear AA', is a parabiloic arc (Speech) with rays of circles: Aa = r, Bb = R and basic distance $ab = \frac{h}{2}$. Here below the ellipsoid as a rotational paraboloid is as

$$V = \frac{\pi l}{2} (R^2 + r^2)$$

As $R = \frac{D}{2}$, and $r = \frac{d}{2}$ and $l = \frac{h}{2}$ the Volume is about $V = \frac{\pi}{8}(D^2 + d^2)h$.

The parabola through A(0,r) and B(l,R) with $y^2 = 2px + c$, where $\exists p,c$ leading to $r^2 = c$ $R^2 = 2pl + c$ with

The Quadrature as a form of rotation as volume is

$$V = \pi \int_{0}^{l} y^2 dx = \pi \left(\frac{r^2 + R^2}{l} \cdot \frac{l^2}{2} + r^2 l = \frac{\pi l}{2} (r^2 + R^2) \right)$$
 and has an inner product.

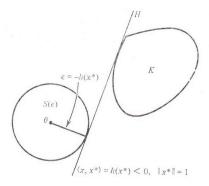
About Volume we should explain:

Definition of the Work Inner Product: by introducing a Pre Hilbert Space defined as: X a linear vector Space with an inner product. The *Optimization Problem*: $\exists m_0$ unique in $\|x - m_0\| \le \|x - m\|$ with $m \in M$ a SubSpace. (neccessary and sufficient) In front of the *Projection Theory*, **Klima** is defined: as M a SubSpace well defined. The Climate is Spanish and from South of France. The Ends Meet $y_i \to b_i$, as $x_i \to y_i$, \Rightarrow *Orangeraie* with $b_i^{(1)}, b_i^{(2)} \dots$ in M. The *Orangeraie* is defined as: $y_i \to b_i$ in $(a_i.)x_i = y_i \le b_i$. The definition of Support in a Hilbert Space as we see: $b = \langle e_1, b \rangle e_1 + \langle e_2, b \rangle e_2 + \dots + \langle e_n, b \rangle e_n$. with $\langle e_i, b \rangle - \langle e_{i+1}, b \rangle \to 0$. (expectation at Palma). The Majoration: $\sqrt{\langle e_l, b \rangle} \le \|e_l\| \|b\|$ is by

$$\langle e_i, b \rangle - \langle e_{i+1}, b \rangle \to 0$$
. (expectation at Palma). The Majoration: $\sqrt{\langle e_l, b \rangle} \leq ||e_l|| ||b||$ is by $|e_l \perp b \to \langle e_l, b \rangle = 0$ leading to $A^{\perp}e_l - z = b \Rightarrow \begin{bmatrix} e_l \\ f(x_0) = z \end{bmatrix}$ known from $A^{\perp}e_l = f(x_0)$.

(also called Representation of Climate as Living Organism). (The **Ends Meet** as Geodesic(Conjunction) and are justifying Authorization for Law Action $y_i \rightarrow b_i$ a Computer Presence, in a corporativism Mandate and where the *Affichage(Cooperathon)* $x_i \rightarrow y_i$ as Consummers to Institutions (Participants et Somme) is at $J(\vartheta_i)$). The *Affichage* is defined as: $\begin{bmatrix} x & f(x) & g_1(x) & g_i(x) ... \end{bmatrix}$ as a Shear (choice of Peak) Colinearity and Parallelism and $J(\vartheta)$ orthogonal (free massonery) at Space. The Market is seen again as: Surjective Range as a Non Match implicit function with a parameter at ∂M . (Here ∂M is an expansion about a_0).

From the **Implicit Function** we have a Non Match as the function is not explicit and we need a Form (for the moment let'us call it a Shear). The implicit function as Volume


(Quadrature)(Shears)(Logistic Hypothesis defined: as Inner Product in:

$$h_{\vartheta} = \frac{1}{1 - e^{\langle \vartheta^T x \rangle}}$$
 an inner product of a Decision Boundary $\langle \vartheta^T x \rangle$ Stammfunktion ins x wie ϑ_i .

Here we have Points, Lines (as $\langle \vartheta^T x \rangle$ Stammfunktion ins x wie ϑ_i), Segments (Shears), Half Lines (from $J(\vartheta_i) \to \min$), Angles (Gradient Descent: for $J(\vartheta_i) \to \min$ keep changing ϑ_0 to ϑ_n to reduce $J(\vartheta_i)$ til the end. An example is: $\vartheta_j := \vartheta_j - \alpha \frac{\partial J(\vartheta_{0...n})}{\partial \vartheta_j}$ for j = 0 and j = n called Features in $\vartheta_0 + \vartheta_1 x_1 + ... + \vartheta_n x_n$ and Multiple Variables $\vartheta_0 + \vartheta_i x^i ... + \vartheta_n x^n$). From Volumes we have Critical Points in Differentiability. (see *Sphere* (one, two...parameters) $\to Volum e$). (See ∂M).

What is meant by Commercial Law: Cache Feedback—Syndicate in Pharmacy as a Security with Germanity in acceleration: Support Functional for Sustainable Activity from Germanity.

To prepare the theorem: $\exists K$ Convex Set, at a finite distance from ϑ (Ville de Montréal-Restauration Point). Let $x^* = X^*$, and $||x^*|| = 1$ and Let $H = \{x : \langle x, x^* \rangle = h(x^*)\}$ be a support for K, separating ϑ form K, then the distance $\langle \vartheta, H \rangle = -h(x^*)$ (a later stage improvement)

Parametrization is free of theory with Germanity.

If we assume that $x \to y(x)$, we let h(x) be the error E(x) in the tangent line approximation, namely E(x) = y(x) - y(a) - y'(a)(x - a), where E(a) and E'(a) are both zero, and E''(x) = y''(x), and $g(x) = (x - a)^2$, then g(a) and g'(a) are both zero, then

$$\frac{E(x)}{(x-a)^2} = \frac{E'(y)}{2(y-a)} = \frac{E''(T)}{2} = \frac{y''(T)}{2} \text{ where } y \in (a,x) \text{ and } T \in (a,y)$$

If y is twice differentiable on I, containing the point $a, \forall x \in I$,

$$E = y(x) - [y(a) - y'(a)(x - a)],$$
 and

$$E = \frac{y''(T)}{2}(x-a)^2 \text{ where } T \in (a,x)$$

The Hôpital Rule is: $y(x) \to 0$, $g(x) \to 0$ as $x \to a$, and $\frac{y'(x)}{g'(x)} \to L \le \infty$, as $x \to a$, then $\frac{y(x)}{g(x)} \to L \le \infty$ as $x \to a$.

Sequences in One Variable s Passing: The Hahn Banach and German Language Separation theorem introduce an Work function at π_i at i = k. For these, $\exists P$ a Sphere as given around an Origin, and $P \notin P$, then $\exists \pi_k$ hyperplanes, with $P < \pi_k < P$.

Dialectics and **Duality** are regularly introduced:

$$\min_{\mathbf{b}}(P-\mathbf{b}) = \max_{K \text{ to } \mathbf{b}}(P_k - \pi_K(P)), \ \forall \pi : P < \pi_K < \mathbf{b}$$

The *Droit de Principauté* is defined as: $\exists M$ such that f(x) < M connected as $\exists c$, $a < c < b, I \subset \mathbb{R}$ majorated fiscally and as Brachistocrone, with encadrement m < f(x) < M, |f(x)| < P seen from Canada, monotonous: $x_i < x_{i+1} \rightarrow f(x_i) < f(x_{i+1})$.

The view is *Multivoque* $f oup f^{-1} oup f oup f^{-1}$.. as an error from *Indigènat*. (*Droit de Principauté*). Loss is: the Savings Flow. Stage: Trade War of Brand, low interest rates, Finance edge in Market Context. Age and Access to Fianancing (EU) demand as Deficit Estimation. Relaxation defined: fiscal surpus targets (Punk Open Source-Code present Chip) should be relaxed in dimension *i*: Momentum and Yield as r, 9. The Equity assets: data shift as automated sell of Cache nd Feedback. The Texan statedwide elections: set for preppies with wrong Volume Inner Product on Commercial Law at SUMS. Data Shift is introduced as retrievable where the sum on floor permitting Cache and Feedback: $\int g^r(x)g^i(x)dx$ (a Cache telescoping as $1 + x + \dots + x^n = \frac{1-x^{n+1}}{1-x}$) = $\frac{g^{r+1}(x)}{r+1}$ (a Feedback).

Luxury Affluence in a German Geodesic.

We look after a flip (affluent flip). As from two poles, the flip would run from one direction to the other. The poles may be many.

It involves a rate of change of a quantity about several different directions, or with respect both to time t (and distance (x, y, z)). Such rates are viewed as partial derivatives, since there is more than one independent variable in such problems. The flow of the flip is:

$$\frac{d^2u}{dx^2} + \frac{d^2u}{dv^2} + \frac{d^2u}{dz^2} = \frac{1}{c^2} \frac{d^2u}{dt^2}$$

It is sound in the medium. The equation gives a hint of the progression of t, with these directions.

As the progression, is through these directions (say one: $x, y, z \in \mathbb{R}^2$), we call the wave u(x,t) a vertical displacement at point x.

 $u(x,t) = \phi(x-ct)$ is a first approximation. c is called a velocity.

The situation is more complex, as the environment responds with an **echo**. For a luxury feature, we have a lesser response $\psi(x-ct)$, in between two poles. $u(x,t)=\phi+\lambda\psi$ is also called combined wave from Lagrangian. A famous theorem, we will not show, says: for ϕ and ψ we have $\frac{d^2u}{dx^2}=\frac{1}{c^2}\frac{d^2u}{dt^2}$, repeated for y and z.

The affluence is by this argument:

- 1. we have a wave given before the affluence ϕ and ψ
- 2. at t = 0, $\exists u(x,t) = 0$
- 3. $\forall t \ge 0$, u(0,t) = 0, for a given interest $z \ge y \ge x$
- 4. $\forall t \geq 0, \quad u(y,t) = 0,$
- 5. The equation u may be computed $\frac{d^2u}{dx^2} = \frac{1}{c^2} \frac{d^2u}{dt^2}$ and the iteration repeated for y and z.

One way to understand this is that the speed of the speed of luxus affluence is as much as the speed of the speed of luxus affluence in time. (also called immediacy).

The Coding Manual \uparrow : protend prolonged pitched battle r (as from Grece), ∃investigator (digital Authority), Olaf Schultz (German Minister of Finance) Margarethe Vestager. The **adjacence** is defined as: lobbyist $(\exists s_i)$. Anticipation of rules \rightarrow inclusive. The use of Cache and Feedback: is from Welfare (bis Osten) for Ordinary Folk. The Machine dominated Finance Limit: as a Belt: Microsoft, Apple, Amazon, Alphabet (Google (valuable firms) (law computing and new legislation) **Statewide** listed. The Objective of Prospection de Marché: defined as a slack variable: IPO Porteur de Projet. Media and Virtual Reality at the Point of Sale as Existence of w_k Slack and Framing Human **Machine Interface Intervention**. Here $\exists w : y \gg w \gg x$. In the case we have: **Commands** in Optimal Time are close to Google Drive. $[x^i(t)]$ are Phase coordinates. $[u^i(t)]$ command coordinates. See $[x^i(t)] \in X$ the Phase Space, and the admissible Command $[u^i(t)]$ may lead to $[u^i] \in \mathbb{R}^r$, with the closed domain of Command Space $U \subset \mathbb{R}^r$. The energetic **parameters** $[u^i(t)]_{t\in[t_0,t_1]}^{i=1,\dots,r}$ are initial with $[x^i(t)]_{t=t_0}^{i=1,\dots,n}$ with $i\in[1;n]$. $\exists \varphi:[x^i(t)]^{i=1,\dots,n}\to\rho\in\mathbb{R}$ and the Command Parameters $[u^i(t)]_{t\in[t_0,t_1]}^{i=1,\dots,r}$ are linked as $\varphi([u^i(t)]^{i=1,\dots,r}) = 0$. (binded).

In U, we may set: $u_1(t) = \cos \phi$ and $u_2(t) = \sin \phi$, for arbitrary ϕ , then $(u_1)^2 + (u_2)^2 = 1$ is U complementary to G and U called circumference. (and G a closed domain as a Phase Domain). The movement of $[x^i(t)]$ is inside G, and on ∂G . The movement of $G \to \partial G$, is done by diffraction. Formulation of the Problem on *n* Phases and Commands.

The $[x^i(t)]^{i=1,\dots,n}$ are called Optimal Trajectories (denombrement), exist where f^i are called *n* components in $\frac{\partial x}{\partial t} = f^i(x, u)$. We know (*The Movement Law of the n Objects*):

$$\frac{\partial [x^{i}(t)]^{i=1,\dots,n}}{\partial t} = f^{i}([x^{1}(t),x^{2}(t),\dots,x^{n}(t),u^{1}(t),\dots,u^{r}(t)]) = f^{i}([x^{i}(t)]^{i=1,\dots,n}[u^{i}(t)]^{i=1,\dots,r})$$

$$\exists \frac{\partial \left[f^i\left(\left[x^1(t),x^2(t),...,x^n(t),u^1(t),...,u^r(t)\right]\right)\right]^{i=1,...,n}}{\partial x^j} \text{ with } i,j \in [1;n] \cap \mathbb{N} \text{ and we may have } \left[x^i(t)\right]_{t\to\alpha\in\mathbb{R}}^{i=1,...,n}.$$

 $\exists \frac{\partial \left[f^i(\left[x^1(t),x^2(t),...,x^n(t),u^1(t),...,u^r(t)\right])\right]^{i=1,...,n}}{\partial x^j} \text{ with } i,j \in [1;n] \cap \mathbb{N} \text{ and we may have } \left[x^i(t)\right]^{i=1,...,n}_{t\to \alpha\in\mathbb{R}}.$ The main statement is: We admit $\left[u^i(t)\right]^{i=1,...,r}_{t\in[t_0,t_1]}$ transferring the representative position $[x^{i}(t)]_{t \in [t_{0},t_{1}]}^{i=0} \text{ to } [x^{i}(t)]_{t \in [t_{0},t_{1}]}^{i=1} \text{ if } [x^{i}(t)]_{t \in [t_{0},t_{1}]}^{i=1,\dots,n} \text{ solves the Law of Movement of } n \text{ Objects,}$ $\text{namely: } \frac{\partial [x^{i}(t)]^{i=1,\dots,n}}{\partial t} = f^{i}([x^{i}(t)]^{i=1,\dots,n}[u^{i}(t)]^{i=1,\dots,r}) \text{ with initial condition } [x^{i}(t)]_{t=t_{0}}^{i=0}, \text{ and is also}$ defined on $t \in [t_0t_1]$ and passes through t_1 at point $[x^i(t)]_{t_1}^{i=1}$. We recall that we found n Objects $[x^i(t)]_{t \in [\theta_{k-1}, \theta_k]}^{i=1, \dots, n}$ to the last $[x^i(t)]_{t \in \theta_n}^{i=1, \dots, n}$ and expect $[x^i(t)]_{t \in t_1}^{i=1, \dots, n}$ to pass at $t = t_1$. By the Law of Diffraction this is called a Transfer. The Diffraction comes from:

$$[x^{i}(t)]^{i=1,...,n} \to [x^{i} *]_{t \in [1:2:..k]}^{i=1} \in \mathbb{R}^{n}.$$

The Compact Space.

The transaction is from the Real Estate: Comfort in $\mathbb{R}^n \to \text{Ortho Non Corrector}$.

 $s_i \rightarrow (x_i \rightarrow y_i)$ and $s_i \rightarrow$ Counter seen in (y_i, x_i) being Cauchy, with $(y_i - x_i)$ seen as complete and totally bounded from the presence of the Slack Variable $\exists w : y \gg w \gg x$, with x_i is out of a Domain and lacks Surjectivity. As such: $\exists w : [y \gg w \gg x] \Rightarrow y_i - x_i$ is seen as Big, also seen as $y_i - x_i \gg 0$.

The Case.

$$\exists y_i \to \exists Presse \text{ with enjeu } y_i - x_i \ge 0. \text{ (Equity)}$$
[Overfit in $\mathbb{R}^n \rightsquigarrow \text{ Comfort Out of Real Estate}$] $\Leftrightarrow [\mathbb{R}^n \to \text{ Compact } \rightsquigarrow \text{ Corridor}]$

Overfit in $\mathbb{R}^n \rightsquigarrow \text{Comfort Out of Real Estate} \Rightarrow \exists \text{Slack Value called Nation as}$

Continuity to the Right.

Continuity to the Right (Adjunct(Association Limaçon $1 + n \cos \theta$, Unitary, \exists Data Shift (and Propose à l'Interface Homme Machine)), ∃SyndicatsNumériques) ↔Corridor

Defining Cache: In computing, a cache is a hardware or software (x_i) component that stores data so that future requests y_i for that data can be served faster as $\begin{vmatrix} -\sin t \\ \cos t \end{vmatrix}$; the

data stored in a cache might be the result of an earlier computation or a copy of data stored elsewhere and used for calculation and not only shift. A cache hit occurs when the requested data can be found in a cache, while a cache miss occurs when it cannot. Cache hits are served by reading data from the cache, which is faster than recomputing a result or reading from a slower data store; thus, the more requests that can be served from the cache, the faster the system performs.

Defining **Feedback**: occurs when outputs of a system are routed back as inputs (the y_k in x_i) as part of a **chain** of **cause-and-effect** that forms a circuit or loop (*Kette*). The system can then be said to feed back into itself. The notion of cause-and-effect has to be handled carefully when applied to feedback systems.

See Parametrization above: **Parametrization is free of theory with Germanity**.

Indeterminate Forms by Lack of Sale (Commercial Law and Non Symetric pdf.).

$$|f(x)| \to \infty$$
 $|g(x)| \to \infty$ $a \to \infty$ with $\frac{f'(x)}{g'(x)} \to L$, $\frac{f(x)}{g(x)} \to L$ as Extrmity of Market and $\sin(\frac{\pi}{2} - x) = \cos x$.

 $\lim_{x\to\infty}\frac{\ln x}{x}=\lim_{x\to\infty}\frac{\frac{1}{x}}{1}=\frac{0}{1}=0$: necessity of Talk with PharmAsia Here $CacheFeedback\to Equity$ and Syndicate. $\lim_{x\to 0+}x\ln x=\lim_{x\to 0}\frac{\ln x}{\frac{1}{x}}=\lim_{x\to 0+}\frac{\frac{1}{x}}{-\frac{1}{x^2}}=\lim_{x\to 0+}-x=0$: Function Parameter

$$\lim_{x\to 0+} x \ln x = \lim_{x\to 0} \frac{\ln x}{\frac{1}{x}} = \lim_{x\to 0+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x\to 0+} -x = 0$$
: Function Parameter $x\in [1;\infty)$ with Cost $\ln x$.

 $\lim_{x\to\infty} \frac{x^2}{e^x} = \lim_{x\to\infty} \frac{2x}{e^x} = \lim_{x\to\infty} \frac{2}{e^x} = 0$ (Money, Function, Distance, Determination) :Determination of Distance by Lack.

The **Action and Observations** are seen as conjunctions:

$$do(X_i = x_i) \iff s_i \to (x_i \to y_i) \text{ and } \Pr(Z = z) \to do(X = x).$$

Where we define:

X as control variables $(\exists i \text{ such that } \exists X_i)$ and Z and observed fixed variable U latent unobserved variable and Y outcome variable.

The Action and Observations are seen as conjunctions:

$$do(X_i = x_i) \iff s_i \to (x_i \to y_i)$$
 and $Pr(Z = z) \to do(X = x)$ with lack of s_i as Relaxation form Observation Z

There is non-determination of the paraboloid as below half of Volume (the Ellipsoid has two foci expressed as polar expansion for Work as Capacity and is not a Sphere). The Shear

AA', is a parabiloic arc (Speech) with rays of circles: Aa = r, Bb = R and basic distance $ab = \frac{h}{2}$. Here below the ellipsoid as a rotational paraboloid is as

$$V = \frac{\pi l}{2} (R^2 + r^2)$$

.

As
$$R = \frac{D}{2}$$
, and $r = \frac{d}{2}$ and $l = \frac{h}{2}$ the Volume is about $V = \frac{\pi}{8}(D^2 + d^2)h$.

The parabola through A(0,r) and B(l,R) with $y^2 = 2px + c$, where $\exists p,c$ leading to $r^2 = c$ $R^2 = 2pl + c$ with

The Quadrature as a form of rotation as volume is

$$V = \pi \int_{0}^{l} y^2 dx = \pi \left(\frac{r^2 + R^2}{l} \cdot \frac{l^2}{2} + r^2 l = \frac{\pi l}{2} (r^2 + R^2) \right)$$
 and has an inner product.

About Volume we should explain:

Definition of the Work Inner Product: by introducing a Pre Hilbert Space defined as: X a linear vector Space with an inner product. The *Optimization Problem*: $\exists m_0$ unique in $\|x - m_0\| \le \|x - m\|$ with $m \in M$ a SubSpace. (neccessary and sufficient) In front of the *Projection Theory*, **Klima** is defined: as M a SubSpace well defined. The Climate is Spanish and from South of France. The Ends Meet $y_i \to b_i$, as $x_i \to y_i$, \Rightarrow *Orangeraie* with $b_i^{(1)}, b_i^{(2)} \dots$ in M. The *Orangeraie* is defined as: $y_i \to b_i$ in $(a_i.)x_i = y_i \le b_i$. The definition of Support in a Hilbert Space as we see: $b = \langle e_1, b \rangle e_1 + \langle e_2, b \rangle e_2 + \dots + \langle e_n, b \rangle e_n$. with $\langle e_i, b \rangle - \langle e_{i+1}, b \rangle \to 0$. (expectation at Palma). The Majoration: $\sqrt{\langle e_l, b \rangle} \le \|e_l\| \|b\|$ is by

$$e_l \perp b \rightarrow \langle e_l, b \rangle = 0$$
 leading to $A^{\perp}e_l - z = b \Rightarrow \begin{bmatrix} e_l \\ f(x_0) = z \end{bmatrix}$ known from $A^{\perp}e_l = f(x_0)$.

(also called Representation of Climate as Living Organism). (The **Ends Meet** as Geodesic(Conjunction) and are justifying Authorization for Law Action $y_i \rightarrow b_i$ a Computer Presence, in a corporativism Mandate and where the *Affichage(Cooperathon)* $x_i \rightarrow y_i$ as Consummers to Institutions (Participants et Somme) is at $J(\vartheta_i)$). The *Affichage* is defined as: $\begin{bmatrix} x & f(x) & g_1(x) & g_i(x) ... \end{bmatrix}$ as a Shear (choice of Peak) Colinearity and Parallelism and $J(\vartheta)$ orthogonal (free massonery) at Space. The Market is seen again as: Surjective Range as a Non Match implicit function with a parameter at ∂M . (Here ∂M is an expansion about a_0).

From the **Implicit Function** we have a Non Match as the function is not explicit and we need a Form (for the moment let'us call it a Shear). The implicit function as Volume (Quadrature)(Shears)(Logistic Hypothesis defined: as Inner Product in:

$$h_{\vartheta} = \frac{1}{1 - e^{\langle \vartheta^T x \rangle}}$$
 an inner product of a Decision Boundary $\langle \vartheta^T x \rangle$ Stammfunktion ins x wie ϑ_i .

Here we have Points, Lines (as $\langle \vartheta^T x \rangle$ Stammfunktion ins x wie ϑ_i), Segments (Shears), Half Lines (from $J(\vartheta_i) \to \min$), Angles(Gradient Descent: for $J(\vartheta_i) \to \min$ keep changing ϑ_0 to ϑ_n to reduce $J(\vartheta_i)$ til the end. An example is: $\vartheta_j := \vartheta_j - \alpha \frac{\partial J(\vartheta_{0...n})}{\partial \vartheta_j}$ for j=0 and j=n called Features in $\vartheta_0 + \vartheta_1 x_1 + \ldots + \vartheta_n x_n$ and Multiple Variables $\vartheta_0 + \vartheta_i x^i \ldots + \vartheta_n x^n$). From Volumes we have Critical Points in Differentiability. (see *Sphere* (one, two...parameters) $\to Volum e$). (See ∂M).

Slack Variable and Actor Agency for Nachlass. The Action and Observations are seen as conjunctions at Sectorial in Wide Spaces Z in Kuazulu Natal:

$$do(X_i = x_i) \iff s_i \to (x_i \to y_i) \text{ and } Pr(Z = z) \to do(X = x).$$

do(X = x) is Business Validation and do(X = x) Selling Ownership Equity. $s_i \rightarrow (x_i \rightarrow y_i)$ is the Operationality Range, and s_i Rest Response. The response is Participatory to Counter and looking for Investment. The Control is with Projections defining Spaces. Stationnarity with Sectors have values as there are Roots. By this Control, we see Slack Variables. We address them from Lemmas and Corollaries. Sustainability and mediane(affaires), moyenne(pharmacie) et mode(interface personne système)-Linkedin et Caisse de Dépôt du Qc (Conseil au CCMM dans site web) (Angleterre) (Biz Acquisition et Communication) Oana But(g?)nariu Nathalie Perron Chargée des Projets Spéciaux au CCMM (tu demandes \$15 et autre) Commercialization of PharmAsia: Marque de Commerce (Trademark) -médiane moyenne et mode - Holistic Brand Copyright Spécialization (ici la Dualité dans le parallèle de PharmAsia et Info Entrepreneurs à l'Intelligence du Marché) After the Coopérathon, we get signs from experts and mentors. Project Holder as Porteur de Projet. (Modèle de Contrat) The Copyright is free of Charge (ask the Consièrge)

Enjeux du Code (Proprietary Software qui évolue, Class Design (Back Control) for the Plateforme et Base de Données) et des Développeurs (Command Code). Théorème de la *Séparation (er du Code) et Images et Vidéos* depuis Syndicats Numériques avec Photos as Scaling.

Folk and Work in front of Net Worth Personal Event - A^{adj} is seen as $(Ax,y) \rightarrow (x,A^{adj}y)$.

The a_i lead to: Protection de Résponsabilité Limitée. in little Residual Sums, and f is known as a Logistic Threshold in $a_i \rightarrow f(a_i)$ (making Lists), seen from Range and Domain with Spontaneity. There is access external financing: Initial public offering (IPO) or stock market launch and A seasoned equity offering or secondary equity offering (SEO) or capital increase is a new equity issue by an already publicly traded company. (establishement in Cabinet) **The Business Valuation and Sustainability**: where Investment is defined as **Aquizition** in Maximizing Equity and as a wrong Time Horizon x(t) but Individual Goal. **Net Worth** is: $\sum a_i - \sum liability_i$ at t. **Cash Flow** is: $In \rightarrow Out$. (many stages) Maximizing

Equity as $\sum a_i$. (Cache Telescoping) **Equity Financing**: Private Investors is : affluent individual providing Capital (Convertible Debt & Ownership Equity) Equity Crowdfunding.

Behavioral Finance by Colonial Figures: Psychology and Emprical Studies. $a_i \rightarrow n_i$: is a transformation by High Technology and Vector Calculus. Networking at n_i is done through PICC.

Intentionality and Actions (Lipschitz Continuity):

$$d_Y(f(x_1), f(x_2)) \leq Kd_X(x_1, x_2)$$
 where $f: X \to Y, x_i \in X$

If $K \in [0, 1]$ f is a contraction, else if K = 1 is Media with d_X a list.

PharmAsia is Immediate Syndication and Controversy. $s_i \rightarrow (x_i \rightarrow y_i)$ has Perfect Threshold $x_i \rightarrow y_i$. (there is no raising Equity), but there is a Sequential Plan close to a Non Sequential one. We know $f_j : x_i \rightarrow y_l$, as **Favour from Extremities of the Market with Forwarding Tasks**. (require communication on Internet!!).

Why an IPO (Initial Public Offering) ?: Security Issues, best offering price, amount of shares to issue and time to bring it to the Market. To find a good Investment you have to see Counters and do a IPO. There are many Tractations.

Hereafter the decline of functions: Hysteresis (cost of adaptibility and Aeging) seen as many fold: $(X(t), Y(t)) = (x_0 \sin(\omega t), y_0 \sin(\omega t - \phi))$ where ϕ is the delay. It comes in this explanation $Y(t) =_F X(t) + \int_0^\infty \Phi(\tau) \cdot X(t-\tau) d\tau$. The delay comes in $x_i \to (y_i + E(i))$, here E is the expectation. Here $\Phi(\tau)$ is a Price and $X(t-\tau)$ Quality as much in time Aeging correcting X(t).

Chronobiology (neuro-endocrinian system and andropose) - reproduction, digestion, metabolism, neuro-végétatif system: $(x_i \rightarrow y_j) \rightsquigarrow \wp_k$, where \rightsquigarrow is *surjective* and \wp_k is a voluntary control (therefore *not submitted at the voulntary control*).

The post-developmental longevity presents the hysteresis below, and we have to invert it.

The **Pareto Common Belief** is defined as; $\langle y - x, y - x \rangle \rightarrow Max$ at ProbabilityDistortion. (No Aggregate Uncertainty from two pdfs).

Representation of Help is as
$$\begin{bmatrix} \cos \vartheta & -\sin \phi \\ \sin \vartheta & \cos \vartheta \end{bmatrix}$$
 as price from $\cos \vartheta$ (for Slack

Probability Distortion. (No Aggregate Uncertainty from two
$$pdf$$
s).

Representation of Help is as $\begin{bmatrix} \cos \theta & -\sin \phi \\ \sin \theta & \cos \theta \end{bmatrix}$ as price from $\cos \theta$ (for Slack Variable) and Parameter Introducing as $x \sin \theta = \cos \theta$. (here $x = \frac{\cos x}{\sin x}$ with $\begin{bmatrix} \cos t \\ \sin t \end{bmatrix} + \lambda \begin{bmatrix} -\sin t \\ \cos t \end{bmatrix}$. Further Parameter introducing is $-\sin \phi$. PharmAsia is seen as a

Probit to be sold. The Probit $Proj(B) \subset Proj(A)$ par cooperation from Lead (in Proj(B) as mx = c) and Referral (in Proj(B)) and as Business for Social Capital to create employees for buying PharmAsia. The enterprise is known as Individual Enterprise and in Romania. (NGO's, Mutual/Credit Unions, Employees Mutual, Retired Mutuals, Handicraft Cooperatives, Consumers and Credit Cooperatives). Cooperation is defined: Incremental solutions lead to, public administration reform and the development of instruments of the public-private type of partnership. This Potential is Investment Prone. PharmAsia is a Cash Value if you adpat to NGO's, Mutual/Credit Unions, Employees Mutual, Retired Mutuals, Handicraft Cooperatives, Consumers and Credit Cooperatives. No Costs are prone as cédant. There is a World Repreunariat Network. There are two threads of duality drive: **Enterprise** (*fiches*) and **Fiscality**. By Enterprise we also mean the Total as Social present. (Fonds d'Investissement) and y_k . Features of completition: Acquisition of Real Estate Places for Market development and Roulement associative in IT. The y_k is called Light further Business Prospection and No Strategy- that is a simple cost less prone Enterprise.

Operators defined from: Statics to Right Top Corner. The Commercial: $\mathbb{R}^3 \to \mathbb{R}^3$ with **Pivot** at i = 1, 2, 3. par i = 1, 2, 3. Looking like a Contraction x = Tx. This is the definition of raison d'être. The finality is beating the RAMQ regulation and participativity. The Fiscal Year and Task Duality are Potential seen as Pivots and available User's Interface.

Ends Meet defined: Benefice and Elastics in front of Incremental Rationality as Situation.

Elasticities. The Elasticity of y = f(x) with respect to x is the percentage change in f(x) corresponding to a 1% increase in x.

$$El_x f(x) = \frac{x}{f(x)} f'(x) = \frac{x dy}{y dx} = \frac{\partial (\ln y)}{\partial (\ln x)}.$$

We consider $|El_x f(x)| \ge 1$ as elastic at x, and $|El_x f(x)| \le 1$ inelastic. $El_x |f(x)g(x)| = El_x f(x) + El_x g(x)$ and $El_x \Big| \frac{f(x)}{g(x)} \Big| = El_x f(x) - El_x g(x)$ $El_x |f(g(x))| = El_x f(x) El_x g(x)$, $El_x f(A) = 0$ if A is a constant, $El_x x^a = a$ and $El_x e^x = x$ $El_x \ln(x) = \frac{1}{\ln x}$.

We also have partial elasticity as $El_x f(\bar{x}) = El_{x_i} f(\bar{x}) = \frac{x_i}{f(\bar{x})} \frac{\partial f(\bar{x})}{\partial x_i}$

Differential Equations and Variation.

$$\frac{\partial x(t)}{\partial t} = f(t) \leftrightarrow x(t) = x(t_0) + \int_{t_0}^{t} f(\tau) d\tau \text{ and } f(t) \text{ monotone.}$$

There are 3 homeomorphisms:

1. Wave strength (time pattern)

$$\frac{\partial x(t)}{\partial t} = f(t)g(t) \leftrightarrow \int_{t_0}^{t} \frac{1}{g(\tau)} d\tau - \int f(t) dt = 0 \text{ or}$$

$$E_1(f(x),g(x);\circ) \rightarrow E_2(\int_{t_0}^t \frac{1}{g(\tau)} d\tau, \int f(t) dt : -)$$

2. Wave growth (time elasticity)

$$\frac{\partial x(t)}{\partial t} + ax(t) = b \leftrightarrow x = Ce^{-at} + \frac{b}{a}$$
 or

$$E_1(x(t), \frac{\partial x(t)}{\partial t}; +) \rightarrow E_2(x(t), e^{-\alpha t}; -)$$

3. Wave speed (time through)

$$f(t,x) + g(t,x) \frac{\partial x(t)}{\partial t} = 0 \iff \text{is exact if } f'_x(t,x) = g'_t(t,x) \text{ or }$$

$$E_1(f(t,x),g(t,x)\frac{\partial x(t)}{\partial t};+) \rightarrow E_2(f'_x(t,x),g'_t(t,x);-)$$

Aeging Theory.

We have a system of Differential Equations:

$$\frac{\partial x_i}{\partial t} = f_i(t, x_1, x_2, \dots x_n) \text{ for } i = 1, \dots n \Rightarrow \frac{\partial x}{\partial t} = A(t)\overrightarrow{x} + b(t) \text{ and } \overrightarrow{x}(t_0) = x^0$$
If $b(t) = 0$ then

$$\overrightarrow{\frac{\partial x}{\partial t}} = Ax + 0 \Rightarrow x(t^0) = x^0 \leftrightarrow \overrightarrow{\frac{\partial x}{\partial t}} = e^{A(t-t_0)}x^0$$

and

$$El_x e^{A(t-t_0)} x^0 = A \rightarrow eign(A).$$

Concave Convex Functions.

 $f(x_i)$ is concave if $f(\lambda \vec{x} + (1 - \lambda)\vec{x'}) \ge \lambda f(\vec{x}) + (1 - \lambda)f(\vec{x'})$ that is injective. (defined as Loss)

From the analytical representation to Implict (no equality): $Domain \rightarrow \exists x_i \rightarrow y_{i,j,...}$ as Multivoque and $x_i \rightarrow y_i$ Univoque.

With Equality we have a fonctional dependence as $f((x,y) = x_i(t))$ with Domain existence $x,y \in \mathbb{R}^n$.

Ordinated **Variability**: $x^*(t) = \begin{bmatrix} x_1(t) & x_n(t) \end{bmatrix} \in \mathbb{R}^n$. We also have increasing decreasing functions with $x(t_i) \ge x(t_{i+1})$ and bounded variability $-M \le x(t) \le M$ with $-1 \le \frac{x(t)}{M} \le 1$.