Null Spaces. Kernels.

Definition of Null Space: The linear transformation $T:E_1 \to E_2$, is represented by the polytope $Ax \le b$ where the Null Space is a SubSpace. (associativity, distributivity, commutativity, element with no inner product, singularity of inverse). If x is a solution of $Ax \le b$, in these x's we have a Null Space. This Sub Space contains a Polytope (Covering). This Null Space is as Ax = 0, implying $E_1(\text{Null}) \subset E_2$. Here $A: E_1 \to E_2$. The Range is also a Sub Space (Column Space of A). The A has a Codomain as Surjective. The Projections \wp on S_1 and S_2 are like: $\wp(S_1) \subset \wp(S_2)$ once S_i is given as Sub Spaces and we have a Null Space into S_1 .(associativity, distributivity, commutativity, element with no inner product, singularity of inverse).

Dissolvement of Commerce: $H \subset X$, if $0 \nsubseteq H \to \exists$ unique f on X such that $H = \{x : f(x) = 1\}$ (the use of Total).

Continuity in Discussion: $\exists f$ non zero linear functional on X, Then

 $H = \{x : f(x) = c\} \forall c. \Leftrightarrow f \text{ continuous (Swiss Pharmacy)}$

Probe of Work in Cluj: the hahn Banach Theorem: $\exists K$ with an interior point, $\exists x_0 \notin \overline{K} \to \exists \pi(x_0) \in K$.

Connectedness of Spaces (mainly in Business).

 $\langle A, \rho \rangle \subset \langle M, \rho \rangle$, then $\neg \exists A_1, \neg \exists A_2$ such that $A = A_1 \cup A_2, \overline{A_1} \cap A_2 = 0, A_1 \cap \overline{A_2} = 0, A_2$ is connected. If $A \subset \mathbb{R}$ connected $\Rightarrow a, b \in A, a < b, \exists c \in A$ such that a < c < b. If f is continuous on A connected, $f : A \to B$, then B is connected.

If f is continuous on I = [a; b] then $\forall c, a < c < b$ and f(c) exists $\forall c$. $A_1 \& A_2$ are connected, and $\subseteq M$, $A_1 \cap A_2 \neq 0$ then $A_1 \cup A_2$ is connected.

We know A_k covers A, $A = \bigcup_{k=1}^{\infty} A_k$. If $diam A_k < \epsilon$ then A is totally bounded as $n < \infty$.

Regularly bounded : $\forall x, y \in A, \rho(x, y) < L$. If $\exists y$ such that $\rho(x, y) < \epsilon, \forall x$, then the set $x, y \in A$ is dense.

If $A \subset M$, A totally bounded, then $x_i \in A$ has a Cauchy subsequence.

If x_i ? \rightarrow ? x_{∞} , and is a Cauchy sequence then $x_{\infty} \in M$.

If M complete and $A \subset B$, A Open, then A Complete.

For Compactedness: M complete and *totally* bounded. If $x_i \in M$, has a convergent subsequence in M, then it is compact. (If A closed then compact).

For the Heine Borel Property: A a subsequence of coverings is finite (in M) $\Leftrightarrow M$ compact.

$$f: \begin{bmatrix} A \\ M_1 \end{bmatrix} \rightarrow \begin{bmatrix} B \\ M_2 \end{bmatrix}, \begin{bmatrix} A \\ M_1 \end{bmatrix}$$
 compact, f continuous $\rightarrow B$ compact, with $f(A)$

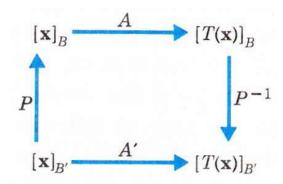
compact in B.

 $f: A \to B$, continuous, A closed bounded, $A, B \subset \mathbb{R}$, then $\exists \beta$ with $f < \beta$ on A. (has a maximum)

f injective (1-1), continuous, $f: A \to B$, A compact, f^{-1} continuous, has f as homeomorphism.

The Rollé Procedure: f continuous on closed and bounded [a; b], and f(a) = f(b) = 0, then $\exists c, a < c < b$ such that f(c) = 0.

The **Worker uses the User Interface**, to compare patterns from the Chamber of Commerce for conditions. The Thread is a One variable Calculus Progression.(the Correction is thorough as Operative EigenSpaces for Interface). These Threads, like functionals is from Basis to Basis as Matrix Eigen-Interpretation: $A' = P^{-1}AP$ with $P \perp P^{-1}$. The Eigen-Space is a Role.



The Resuming Hysteresis New Activity are Sheares.

The **Sector** and $\langle r, \theta \rangle$ leads to *Public Transports* $\frac{\partial f}{\partial r}$. *Retail* $\frac{\partial f}{\partial \theta}$. *Agriculture* $\langle r\cos\theta, r\sin\theta \rangle$. *Finance*: Die Epizykloide: $(x,y) \to ((a+b)\cos\theta - b\cos\left(\frac{a+b}{b}\theta\right)), (a+b)\sin\theta - b\sin\left(\frac{a+b}{b}\theta\right)), \ 0 \le \theta \le 2\pi,$ *Colonialism* Multivoque $f \to f' \to f \to f'$. determinism and use of transcendent functions. *Edition* as Circle and Cardioid. *Medecine* as Cluster. *Justice* as Bayes' Evidences. *Entretien* as *Evolutionary Strategy* from Genetic Calculation. *Artificial Intelligence* is supplementar with **Micro Processor** leading to **Credibility from Montréal**. (Économie de Marché known from majoration and WeierstraB Result). The **Business Community** defines conectedness as $\exists c, a < c < b$ to find M in Market for x in Domain in \mathbb{R} such that f(x) < M. The frame m < f(x) < M is originally set in Canada, and monotonuous $x_i < x_{i+1}$ and $f(x_i) < f(x_{i+1})$.

Proposal of Occupational Sequence.

 $f \in C[I]$ bounded and closed, then $\exists M$ such that f(x) < M. $f \in C[I]$ increasing then $\exists f^{-1} \in C[I]$ increasing. If $f : A \to B, X \subset B, Y \subset B$ then $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$ where X is called increment to Y and $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$. Relationship with Aleika is where Least Upper Bounds and Great Lower Bounds.

Rollé then $\exists c$, in f(c) = 0, a < c < b and connectedness. $f \in C[I]$ closed and bounded, $\exists c \in I$ with f(c) = M = m. The case of Aleika. Piecewise continuity comes as with lower or upper continuity.

Uniform Continuity and Business Problems for solved majoration: for I **closed and bounded candidate**, $\forall \epsilon > 0$, $\exists \delta > 0$, such that $|f(x_1) - f(x_2)| < \epsilon \rightarrow |x_1 - x_2| < \delta, x_1, x_2 \in I$. At this point we speak of sequence $S: \mathbb{N} \to \mathbb{R}$ is converging if \exists bound M and m. If $S_n \upharpoonright$ is incresing and $\exists M$ then convergent. Clearly $\sum_{n=1}^{\infty} S_n$ is wanted convergent if no investment in

business is done. They are non negative terms and there is no viable new product to sell.

Also non alternating. $\sum_{n=1}^{\infty} [S_n]^2 < \infty$ and new product lead to $u \cdot v \le ||u|| ||v||$ Schwartz and Minkovsky $||u+v|| \le ||u|| + ||v||$. The Triangle Inequality is $\rho(x,y) \le \rho(x,z) + \rho(z,y)$ and $l^{\infty} : \exists \rho(x,v) = lub_{n \in \mathbb{N}} |x_n - v_n|$

If M is complete and $A \subset B$, A Open then A Complete. A Complete and if Totally Bounded then Compact. (If A closed then Compact). As there would be a sub-sequence in A then A Compact.

finjective (1-1: $f(a) = f(b) \rightarrow a = b$), $C[a;b], f: A \rightarrow B, A$ Compact, then $f^{-1} \in C[a,b]$ The Normed Linear Space was introduced as by a constrained linear functional determining a Dual Space. As an example: $l: X \rightarrow \mathbb{R}$, where X is known as an Original Space $\forall l \in X^*$ a new Space. There are a sequence of l_i as $l_i \in l^2 = \sum_{n=1}^{\infty} [S_n]^2 < \infty$.

Design on How the Guide sees the Tourist Probe as Many.

The generalization of the mean value principle will be presented. We assume we have the path: $(x,y) \to (g(t),h(t))$ from (x_0,y_0) and (x_1,y_1) . We have the secant line through these two points must be parallel to the tangent line at some in-between point. If the line is not vertical, then the slope is: $\frac{y_1-y_0}{x_1-x_0}$. h and g are continuos on [a,b], then $\frac{h(b)-h(a)}{g(b)-g(a)} = \frac{h'(T)}{g'(T)}$ where $T \in (a,b)$.

Parametrization is free of theory with Germanity.

If we assume that $x \to y(x)$, we let h(x) be the error E(x) in the tangent line approximation, namely E(x) = y(x) - y(a) - y'(a)(x - a), where E(a) and E'(a) are both zero, and E''(x) = y''(x), and $g(x) = (x - a)^2$, then g(a) and g'(a) are both zero, then

$$\frac{E(x)}{(x-a)^2} = \frac{E'(y)}{2(y-a)} = \frac{E''(T)}{2} = \frac{y''(T)}{2} \text{ where } y \in (a,x) \text{ and } T \in (a,y)$$

If y is twice differentiable on I, containing the point $a, \forall x \in I$,

$$E = y(x) - [y(a) - y'(a)(x - a)], \text{ and}$$

$$E = \frac{y''(T)}{2}(x - a)^2 \text{ where } T \in (a, x)$$

The Hôpital Rule is: $y(x) \to 0$, $g(x) \to 0$ as $x \to a$, and $\frac{y'(x)}{g'(x)} \to L \le \infty$, as $x \to a$, then $\frac{y(x)}{g(x)} \to L \le \infty$ as $x \to a$.

Venue is by Augmented Reality: $x_{\cdot i}$ in AX = B is a solution to min CX - d subject to $AX + B, X \ge 0$. We call $x_{\cdot i}$ a feature of Venue.

Work is the dual of the Augmented Reality: $\max B^T U - d$ subject to $A^T U \leq C^T$, where $u._i$ is a feature of Work.

Space Time and Boundary Values: defined as *i* and *Range* at 1) segment \otimes segment and 2) $\mathbb{R}^+ \to \mathbb{R}^2$ (segment \to Halfline). Said: (segment (espacio divisible) \to Halfline (Time Continuity Segment segment \to Complement \to by Determination of Boundary Values.).

Determination (Bestimmung): Establish (Alqueria Alguliar). Negativity $b_i \rightarrow y_i$ is by Range and Negativity (Actualization of Substantive (Dependence Independence Equation) (por n elegios entre los n^2 , and so on.). Determination defined as: suma de todos

los productos posibles (formados n!). (por n elegios entre los n^2 , and so on.). **Distinguer** x_i de y_i \rightarrow One Note. Espacio: $\mathbb{R}^n \rightarrow \mathbb{R}$. (Functional and Metric). **Hilbert** defined by: Inner Product Space that is Complete-Inner Product. The Banach Space is defined as: Metric by a Norm. (Functional). Random Experiment: (for a Sample Space) (Espacio Muestral) by a Zone Franche.